本文目录一览:
- 1、数控编程的步骤有哪些?
- 2、数控编程怎么编程呢?
- 3、数控编程步骤
- 4、数控编程的步骤介绍
- 5、数控机床加工程序的编制步骤
- 6、数控如何编程?
- 7、数控钻床如何编程?
- 8、数控机床是怎么样编程操作的??
- 9、简述数控编程的内容和步骤?
数控编程的步骤有哪些?
数控编程的步骤有五步,分别是分析零件图、确定流程、数学处理、编写程序列表、程序验证和第一次切割
1.分析零件图。需要对零件的材料、形状、尺寸、精度、批次、坯料形状、热处理要求进行分析,以确定零件是否适合在数控机床上加工,或哪种数控机床适合加工。
2.确定流程,在分析零件图的基础上,进行工艺分析,确定加工方法(如夹具、夹紧定位方法等)、加工路线(如刀具设定点、换刀点、进给路线)和切削参数(主轴转速、进给速度、回进给)
3.数学处理,根据零件图的几何尺寸、确定的加工路线和设定的坐标系,计算出零件粗加工和精加工轨迹,得到刀具位置数据。对于形状简单的零件(如直线、圆弧组成的零件)的轮廓加工,需要计算两个几何图元的起点、终点、圆弧中心、交点或切线点的坐标。
4.编写程序列表,完成加工和数值计算后,可编写零件加工程序。根据计算出的作业轨迹坐标值及所建立的加工路线、刀具编号、刀具补偿、切削参数及辅助动作,编程人员按所用数控规定的功能指令码和程序块格式逐条编制加工程序设备。
5.程序验证和第一次切割,必须检查和测试程序表,才能使用。验证方法是将程序清单的内容直接输入数控系统,让机器闲置运行,以检查机器的运动轨迹是否正确。
数控编程怎么编程呢?
数控编程是一种用于自动控制机床和其他制造设备的计算机编程语言。以下是数控编程的一般步骤:
设计零件和工艺过程:首先,需要设计零件,并确定加工工艺过程。这包括确定所需的工具、材料和机床等。
创建数控程序:根据设计的零件和工艺过程,需要编写数控程序。数控程序通常使用标准的数学符号和语法,包括坐标系、半径、角度、刀具半径补偿等。
编辑数控程序:一旦数控程序创建完成,需要使用数控编程软件对其进行编辑和调试。这可以包括检查语法错误、轨迹模拟和程序验证等。
传输数控程序:一旦程序编辑和验证完成,需要将程序传输到数控机床或其他制造设备中。这可以通过网络连接或存储介质传输。
加工零件:一旦数控程序被传输到机床中,机床将自动执行程序,加工出所需的零件。
检查加工质量:最后,需要检查加工后的零件是否符合设计要求和质量标准。如果出现问题,需要检查数控程序和机床的设置,并对其进行调整。
需要注意的是,数控编程需要经过专门的培训和学习,并且需要了解机床和其他制造设备的工作原理和操作方法。
1、分析图纸,确定好需要加工的工艺。
2、合理的选择刀具,夹具安装好,按要求把刀具和夹具安装规定的位置,这个需要根据产品的需要调整。
3、编入程序:根据图纸确定的加工工艺编入程序。
4、根据所编入的程序对刀确认刀补数量。
5、试加工产品,这里一定要确认安全和机台稳定,试做一个产品。
6、确认产品尺寸,OK取出,如NG需进行补刀,使得尺寸OK后取出。这个的调试过程就可以了,然后在试做下一个产品,完全调好数据后即可进入量产。
数控编程步骤
数控编程5个基本步骤:分析零件图确定工艺过程、数值计算、编写加工程序、将程序输入数控系统、检验程序与件试切
1.分析零件图确定工艺过程,对零件图样要求的形状、尺寸、精度、材料及毛坯进行分析,明确加工内容与要求;确定加工方案、走刀路线、切削参数以及选择及夹具等。
2.数值计算,根据零件的几何尺寸、加工路线、计算出零件轮廓上的几何要素的起点、终点及圆弧的圆心坐标等。
3.编写加工程序,在完成上述两个步骤后,按照数控系统规定使用的功能指令代码和程序段格式,编写加工程序单。
4.将程序输入数控系统,程序的输入可以通过键盘直接输入数控系统,也可以通过计算机通信接口输入数控系统。
5.检验程序与件试切,利用数控系统提供的图形显示功能,检查轨迹的正确性。对工件进行件试切,分析误差产生的原因,及时修正,直到试切出合格零件。
科普以下:cnc数控编程是指在计算机及相应的计算机软件系统的支持下,自动生成数控加工程序的过程。它充分发挥了计算机快速运算和存储的功能。
数控编程的步骤介绍
数控加工技术的发展,使得传统机床逐渐淡出市场,取而代之的是更具智能化和自动化的数控机床。而数控编程作为数控加工的核心步骤,目前已经成为机械领域普遍使用的技能。下面将介绍数控编程的步骤。
第一步,图纸分析。在编写程序之前,我们要对零件图纸进行仔细分析。根据图纸上标注的尺寸、形状、位置等信息,选择合适的刀具和加工策略,并画出加工路径和控制程序等。
第二步,程序编写。选定加工策略后,就可以开始编写数控程序。目前常用的编程语言有G代码和M代码两种,各有优缺点。对于不同的机床、工件和加工需求,需要选用不同的编程语言和指令,以保证加工质量和效率。
第三步,程序调试。编写好数控程序后,还需要经过一次调试。通常是通过数控仿真软件对程序进行模拟加工,检测程序的正确性和运行效果。若程序存在错误,需要及时改正,直到满足工件加工要求为止。
总之,数控编程是数控加工技术中重要的一环。通过仔细分析图纸、合理编写程序、精细调试等步骤,可以提高加工质量和效率,实现“一次成型”的目标。
数控机床加工程序的编制步骤
数控机床加工程序的编制步骤如下:
1、分析零件图样和工艺要求
分析零件图样和工艺要求的目的,是为了确定加工方法、制定加工计划,以及确认与生产组织有关的问题。
2、数值计算
根据零件图样几何尺寸,计算零件轮廓数据,或根据零件图样和走刀路线,计算刀具中心(或刀尖)运行轨迹数据。数值计算的最终目的是为了获得编程所需要的所有相关位置坐标数据。
3、编写加工程序单
在完成上述两个步骤之后,即可根据已确定的加工方案(或计划)及数值计算获得的数据,按照数控系统要求的程序格式和代码格式编写加工程序等。编程者除应了解所用数控机床及系统的功能、熟悉程序指令外,还应具备与机械加工有关的工艺知识,才能编制出正确、实用的加工程序。
4、制作控制介质,输入程序信息
程序单完成后,编程者或机床操作者可以通过CNC机床的操作面板,在EDIT方式下直接将程序信息键入CNC系统程序存储器中;也可以根据CNC系统输入、输出装置的不同,先将程序单的程序制作成或转移至某种控制介质上。
控制介质大多采用穿孔带,也可以是磁带、磁盘等信息载体,利用穿孔带阅读机或磁带机、磁盘驱动器等输入(输出)装置,可将控制介质上的程序信息输入到CNC系统程序存储器中。
5、程序检验
编制好的程序,在正式用于生产加工前,必须进行程序运行检查。在某些情况下,还需做零件试加工检查。根据检查结果,对程序进行修改和调整,检查修改再检查再修改……这往往要经过多次反复,直到获得完全满足加工要求的程序为止。
参考资料:
百度百科——数控机床程序编制
数控如何编程?
问题一:数控车床怎么编程? O1 程序命名,大写字母O开头
N1; 实际操作里面,使用N了表示一段工序
T0101; 选择1号刀具,后面一个01是摩耗
M03 S500; 主轴正转,转速为500转
G00 Z1.0; 快速靠近工件
X52.;
G71 U1.R0.3; 外圆粗加工循环,单边进给量为0.3
G71 P10Q20U0.1W0.05F0.15; 定义粗加工的其他参数
N10 G00 X16.; 其实程序段N10,注意第一行一定要走X轴!
G01 Z0 F0.05; F为精加工的进给速度,粗加工不受影响。
X20.Z-2.; 20外圆右边倒角
Z-20.; 20的外圆面
X30.Z-35.; 圆锥面
X40.; 40外圆的右端面
Z-45.; 40外圆面
X46.; 50外圆右端面
X50.W-2.; 50外圆右边倒角
Z-60.; 50外圆面
N20 X52.; 循环结束段N20
G00 X100.; 刀具离开工件
Z100.;
M05; 主轴停止,
M00; 程序暂停,然后手动测量..
N2 精加工程序段
T0202; 选择2号刀具
M03 S1000; 主轴正传1000
G00 Z1.; 刀具快速靠近工件
X52.;
G70 P10 Q20; 进行精加工
G00 X100.; 刀具离开工件
Z100.;
M05; 主轴停止
M30; 程序停止 就是这样编程的明白不!
问题二:如何学习数控编程 首先我要强调一下,如果能数控编程各种语言,那么你在社会人才竞争中就非常有优势。
目前在国内制造业对数控加工高速增长的需求形势下,数控编程技术人才出现了严重短缺,数控编程技术已成为就业市场上的需求热点。
一、学好数控编程技术需要具备以下几个基本条件:
(1)具有基本的学习资质,即学员具备一定的学习能力和预备知识。
(2)有条件接受良好的培训,包括选择好的培训机构和培训教材。
(3)在实践中积累经验。
二、学习数控编程技术,要求学员首先掌握一定的预备知识和技能,包括:
(1)基本的几何知识(高中以上即可)和机械制图基础。
(2)基础英语(高中以上即可)。
(3)机械加工常识。
(4)基本的三维造型技能。
三、选择培训教材应考虑的因素包括:
(1)教材的内容应适合于实际编程应用的要求,以目前广泛采用的基于CAD/CAM软件的交互式图形编程技术为主要内容。在讲授软件操作、编程方法等实用技术的同时也应包含一定的基础知识,使读者知其然更知其所以然。
(2)教材的结构。数控编程技术的学习是一个分阶段不断提高的过程,因此教材的内容应按不同的学习阶段进行合理的分配。同时,从应用角度对内容进行系统的归纳和分类,便于读者从整体上理解和记忆。
四、数控编程的学习内容和学习过程基本可以归纳为3个阶段:
第1阶段:基础知识的学习,包括数控加工原理、数控程序、数控加工工艺等方面的基础知识。
第2阶段:数控编程技术的学习,在初步了解手工编程的基础上,重点学习基于CAD/CAM软件的交互式图形编程技术。
第3阶段:数控编程与加工练习,包括一定数量的实际产品的数控编程练习和实际加工练习。
五、学习方法与技巧
同其他知识和技能的学习一样,掌握正确的学习方法对提高数控编程技术的学习效率和质量起着十分重要的作用。下面是几点建议:
(1)集中精力打歼灭战,在一个较短的时间内集中完成一个学习目标,并及时加以应用,避免进行马拉松式的学习。
(2)对软件功能进行合理的分类,这样不仅可提高记忆效率,而且有助于从整体上把握软件功能的应用。
(3)从一开始就注重培养规范的操作习惯,培养严谨、细致的工作作风,这一点往往比单纯学习技术更为重要。
(4)将平时所遇到的问题、失误和学习要点记录下来,这种积累的过程就是水平不断提高的过程。
六、如何学习CAM
交互式图形编程技术的学习(也就是我们常说的CAM编程的要点)可分三个方面:
1、是学习CAD/CAM软件应重点把握核心功能的学习,因为CAD/CAM软件的应用也符合所谓的“20/80原则”,即80%的应用仅需要使用其20%的功能。
2、是培养标准化、规范化的工作习惯。对于常用的加工工艺过程应进行标准化的参数设置,并形成标准的参数模板,在各种产品的数控编程中尽可能直接使用这些标准的参数模板,以减少操作复杂度,提高可靠性。
3、是重视加工工艺的经验积累,熟悉所使用的数控机床、刀具、加工材料的特性,以便使工艺参数设置更为合理。
需要特别指出的是,实践经验是数控编程技术的重要组成部分,只能通过实际加工获得,这是任何一本数控加工培训教材都不可能替代的。虽然本书充分强调与实践相结合,但应该说在不同的加工环境下所产生的工艺因素变化是很难用书面形式来表述完整的。
最后,如同学习其他技术一样,要做到“在战略上藐视敌人,在战术上重视敌人”,既要对完成学习目标树立坚定的信心,同时又脚踏实地地对待每一个学习环节。
所以,只要你对数控编程感兴趣,本人严重支持你去学它,前途无量啊。
本文参考地址:
...>>
问题三:数控编程怎样做 20分 教你如何成为数控机床编程高手,建议初学者认真阅读。要想成为一个数控高手(金属切削类),从大学毕业进工厂起,最起码需要6年以上的时间。他既要有工程师的理论水平,又要有高级技师的实际经验及动手能力。第一步:必须是一个优秀的工艺员。数控机床集钻、铣、镗、铰、攻丝等工序于一体。对工艺人员的技术素养要求很高。数控程序是用计算机语言来体现加工工艺的过程。工艺是编程的基础。不懂工艺,绝不能称会编程。其实,当我们选择了机械切削加工这一职业,也就意味着从业早期是艰辛的,枯糙的。大学里学的一点基础知识面对工厂里的需要是少得可怜的。机械加工的工程师,从某种程度上说是经验师。因此,很多时间必须是和工人们在一起,干车床、铣床、磨床,加工中心等;随后在办公室里编工艺、估材耗、算定额。你必须熟悉各类机床的性能、车间师傅们的技能水平。这样经过2-3年的修炼,你基本可成为一个合格的工艺人员。从我个人的经历来看,我建议刚工作的年轻大学生们,一定要虚心向工人师傅们学习,一旦他们能把数十年的经验传授与你,你可少走很多弯路。因为这些经验书本上是学不到的,工艺的选择是综合考虑设备能力和人员技术能力的选择。没有员工的支持和信任,想成为优秀的工艺员是不可能的。通过这么长时间的学习与积累,你应达到下列技术水准和要求:1、 熟悉钻、铣、镗、磨、刨床的结构、工艺特点,2、 熟悉加工材料的性能。3、 扎实的刀具理论基础知识,掌握刀具的常规切削用量等。4、 熟悉本企业的工艺规范、准则及各种工艺加工能达到的一般要求,常规零件的工艺路线。合理的材料消耗及工时定额等。5、 收集一定量的刀具、机床、机械标准的资料。特别要熟悉数控机床用的刀具系统。6、 熟悉冷却液的选用及维护。7、 对相关工种要有常识性的了解。比如:铸造、电加工、热处理等。8、 有较好的夹具基础。9、 了解被加工零件的装配要求、使用要求。10、有较好的测量技术基础。第二步:精通数控编程和计算机软件的应用。这一点,我觉得比较容易,编程指令也就几十个,各种系统大同小异。一般花1-2个月就能非常熟悉。自动编程软件稍复杂些,需学造型。但对于cad基础好的人来说,不是难事。另外,如果是手工编程,解析几何基础也要好!读书人对这些知识的学习是最适应的。在实践中,一个好程序的标准是:1、 易懂,有条理,操作者人人都能看懂。2、 一个程序段中指令越少越好,以简单、实用、可靠为目的。从编程角度对指令的理解,我以为指令也就G00和G01,其他都为辅助指令,是方便编程才设置的。3、 方便调整。零件加工精度需做微调时最好不用改程序。比如,刀具磨损了,要调整,只要改刀具偏置表中的长度、半径即可。4、 方便操作。程序编制要根据机床的操作特点来编,有利于观察、检查、测量、安全等。例如,同一种零件,同样的加工内容,在立式加工中心和卧式加工中心分别加工,程序肯定不一样。在机械加工中,最简单的方法就是最好的方法。只要有实践经验的同行,想必都会同意这句话吧!第三步:能熟练操作数控机床。这需要1-2年的学习,操作是讲究手感的,初学者、特别是大学生们,心里明白要怎么干,可手就是不听使唤。在这过程中要学:系统的操作方式、夹具的安装、零件基准的找正、对刀、设置零点偏置、设置刀具长度补偿、半径补偿,刀具与刀柄的装、卸,刀具的刃磨、零件的测量(能熟练使用游标卡尺、千分卡、百分表、千分表、内径杠杆表)等。最能体现操作水平的是:卧式加工中心和大型龙门(动粱、顶梁)加工中心。操作的练习需要悟性!有时真有一种“悠然心会,妙处难与君说”的意境!在数控车间你就静下心来好好练吧!一般来说,从首件零件的加工到加工......>>
问题四:数控编程的步骤是? 数控机床程序编制的内容主要包括以下步骤:
一.工艺方案分析
?确定加工对象是否适合于数控加工(形状较复杂,精度一致要求高)
?毛坯的选择(对同一批量的毛坯余量和质量应有一定的要求)。
?工序的划分(尽可能采用一次装夹、集中工序的加工方法)。
二.工序详细设计
?工件的定位与夹紧。
?工序划分(先大刀后小刀,先粗后精,先主后次,尽量“少换刀”)。
?刀具选择。
?切削参数。
?工艺文件编制工序卡(即程序单),走刀路线示意图。程序单包括:程序名称,刀具型号,加工部位与尺寸,装夹示意图
三.编写数控加工程序
?用UG设置编出数控机床规定的指令代码(G,S,M)与程序格式。
?后处理程序,填写程序单。
问题五:数控机床怎么编程序 首先,要树立一个观念:想学好数控,必须对数控感兴趣。
其次,再谈如何学数控:
针对性的学习,学哪个系统,就去记哪个系统的G、M代码,这很重要。
记熟了这些代码,并知道什么时候采用什么代码,就可以试着编写些简单的零件程序,增加熟练程度。
方便的东西懂得了多了,可以试着加工一些简单的零件,这样一来,理论实际相结合,很轻松的就学好数控了。
可以参考下面的模式:
G代码 组别 解释 ; G00 01 定位 (快速移动) ; G01 直线切削 ; . G02 顺时针切圆弧 (CW,顺时钟) ; G03 逆时针切圆弧 (CCW,逆时钟) ; G04 00 暂停 (Dwell) ; G09 停于精确的位置 ; G20 06 英制输入 ; G21 公制输入 ; G22 04 内部行程限位 有效 ; G23 内部行程限位 无效 ; G27 00 检查参考点返回 ; G28 参考点返回 ; G29 从参考点返回 ; G30 回到第二参考点 ;G32 01 切螺纹 G40 07 取消刀尖半径偏置 ; G41 刀尖半径偏置 (左侧) ; G42 刀尖半径偏置 (右侧) ; G50 00 修改工件坐标;设置主轴最大的 RPM ; G52 设置局部坐标系 ; G53 选择机床坐标系 ; G70 00 精加工循环 ; G71 内外径粗切循环 ; G72 台阶粗切循环 ; G73 成形重复循环 ; G74 Z 向步进钻削 ; G75 X 向切槽 ; G76 切螺纹循环 ; G80 10 取消固定循环 ; G83 钻孔循环 ; G84 攻丝循环 ; G85 正面镗孔循环 ; G87 侧面钻孔循环 ; G88 侧面攻丝循环 ; G89 侧面镗孔循环 ; G90 01 (内外直径)切削循环 ;G92 切螺纹循环 ; G94 (台阶) 切削循环 ; G96 12 恒线速度控制 ;G97 恒线速度控制取消 ; G98 05 每分钟进给率; G99 每转进给率 代码解释 G00 定位 1. 格式 G00 X_ Z_ 这个命令把刀具从当前位置移动到命令指定的位置 (在绝对坐标方式下), 或者移动到某个距离处 (在增量坐标方式下)。 2. 非直线切削形式的定位 我们的定义是:采用独立的快速移动速率来决定每一个轴的位置。刀具路径不是直线,根据到达的顺序,机器轴依次停止在命令指定的位置。 3. 直线定位 刀具路径类似直线切削(G01) 那样,以最短的时间(不超过每一个轴快速移动速率)定位于要求的位置。 4. 举例 N10 G0 X100 Z65 G01 直线插补 1. 格式 G01 X(U)_ Z(W)_ F_ ;直线插补以直线方式和命令给定的移动速率从当前位置移动到命令位置。X, Z: 要求移动到的位置的绝对坐标值。U,W: 要求移动到的位置的增量坐标值。 2. 举例① 绝对坐标程序 G01 X50. Z75. F0.2 ;X100.; ② 增量坐标程序G01 U0.0 W-75. F0.2 ;U50. 圆弧插补 (G02, G03) 1. 格式 G02(G03) X(U)__Z(W)__I__K__F__ ;G02(G03) X(U)__Z(W)__R__F__ ; G02 C 顺时钟 (CW)G03 C 逆时钟 (CCW)X, Z C在坐标系里的终点U, W C 起点与终点之间的距离I, K C 从起点到中心点的矢量 (半径值)R C 圆弧范围 (最大180 度)。2. 举例① 绝对坐标系程序G02 X100. Z90. I50. K0. F0.2或G02 X......>>
问题六:数控机床怎样进行编程序 数控编程方法
数控机床程序编制(又称数控机床编程)是指编程者(程序员或数控机床操作者)根据零件图样和工艺文件的要求,编制出可在数控机床上运行以完成规定加工任务的一系列指令的过程。具体来说,数控机床编程是由分析零件图样和工艺要求开始到程序检验合格为止的全部过程。
数控机床编程步骤
1.分析零件图样和工艺要求
分析零件图样和工艺要求的目的,是为了确定加工方法、制定加工计划,以及确认与生产组织有关的问题,此步骤的内容包括:
确定该零件应安排在哪类或哪台机床上进行加工。 采用何种装夹具或何种装卡位方法。 确定采用何种刀具或采用多少把刀进行加工。 确定加工路线,即选择对刀点、程序起点(又称加工起点,加工起点常与对刀点重合)、走刀路线 、程序终点(程序终点常与程序起点重合)。 确定切削深度和宽度、进给速度、主轴转速等切削参数。 确定加工过程中是否需要提供冷却液、是否需要换刀、何时换刀等。 2.数值计算
根据零件图样几何尺寸,计算零件轮廓数据,或根据零件图样和走刀路线,计算刀具中心(或刀尖)运行轨迹数据。数值计算的最终目的是为了获得数控机床编程所需要的所有相关位置坐标数据。
3.编写加工程序单
常用数控机床编程指令
一组有规定次序的代码符号,可以作为一个信息单元存贮、传递和操作。
坐标字:用来设定机床各坐标的位移量由坐标地址符及数字组成,一般以X、Y、Z、U、V、W等字母开头,后面紧跟“-”或“-”及一串数字。
准备功能字(简称G功能):
指定机床的运动方式,为数控系统的插补运算作准备由准备功能地址符“G”和两位数字所组成,G功能的代号已标准化,见表2-3;一些多功能机床,已有数字大于100的指令,见表2-4。常用G指令:坐标定位与插补;坐标平面选择;固定循环加工;刀具补偿;绝对坐标及增量坐标等。
辅助功能字:用于机床加工操作时的工艺性指令,以地址符M为首,其后跟二位数字,常用M指令:主轴的转向与启停;冷却液的开与停;程序停止等。
进给功能字:指定刀具相对工件的运动速度进给功能字以地址符“F”为首,后跟一串字代码,单位:mm/min(对数控车床还可为mm/r)三位数代码法:F后跟三位数字,第一位为进给速度的整数位数加“3”,后二位是进给速度的前二位有效数字。如1728mm/min指定为F717。二位数代码法:F后跟二位数字,规定了与00~99相对应的速度表,除00与99外,数字代码由01向98递增时,速度按等比关系上升,公比为1.12。一位数代码法:对速度档较少的机床F后跟一位数字,即0 ~9来对应十种预定的速度。直接指定法:在F后按照预定的单位直接写上要求的进给速度。
主轴速度功能字:指定主轴旋转速度以地址符S为首,后跟一串数字。单位:r/min,它与进给功能字的指定方法一样。
刀具功能字:用以选择替换的刀具以地址符T为首,其后一般跟二位数字,该数代表刀具的编号。
模态指令和非模态指令 G指令和M指令均有模态和非模态指令之分模态指令:也称续效指令,一经程序段中指定,便一直有效,直到出现同组另一指令或被其他指令取消时才失效。见表2-3、表2-6 N001 G91 G01 X10 Y10 Z-2 F150 M03 S1500; N002 X15; N003 G02 X20 Y20 I20 J0; N004 G90 G00 X0 Y0 Z100 M02; 非模态指令:非续效指令,仅在出现的程序段中有效,下一段程序需要时必须重写(如G04)。
在完成上述两个步骤之后,即可根据已确定的加工方案(......>>
问题七:数控编程怎么编整圆 G02\G03 X Y I J
编整圆的时候用I J
问题八:数控车床的编程方法是什么啊??? 手工编程是指从零件图纸分析、工艺处理、数值计算、编写程序单、直到程序校核等各步骤的数控编程工作均由人工完成的全过程。手工编程适合于编写进行点位加工或几何形状不太复杂的零件的加工程序,以及程序坐标计算较为简单、程序段不多、程序编制易于实现的场合。这种方法比较简单,容易掌握,适应性较强。手工编程方法是编制加工程序的基础,也是机床现场加工调试的主要方法,对机床操作人员来讲是必须掌握的基本功,其重要性是不容忽视的。自动编程是指在计算机及相应的软件系统的支持下,自动生成数控加工程序的过程。它充分发挥了计算机快速运算和存储的功能。其特点是采用简单、习惯的语言对加工对象的几何形状、加工工艺、切削参数及辅助信息等内容按规则进行描述,再由计算机自动地进行数值计算、刀具中心运动轨迹计算、后置处理,产生出零件加工程序单,并且对加工过程进行模拟。对于形状复杂,具有非圆曲线轮廓、三维曲面等零件编写加工程序,采用自动编程方法效率高,可靠性好。在编程过程中,程序编制人可及时检查程序是否正确,需要时可及时修改。由于使用计算机代替编程人员完成了繁琐的数值计算工作,并省去了书写程序单等工作量,因而可提高编程效率几十倍乃至上百倍,解决了手工编程无法解决的许多复杂零件的编程难题。
问题九:数控编程的步骤,具体的步骤是怎样的? 1、分析零件图 首先要分析零件的材料、形状、尺寸、精度、批量、毛坯形状和热处理要求等,以便确定该零件是否适合在数控机床上加工,或适合在哪种数控机床上加工,同时要明确浇灌能够的内容和要求。
2、工艺处理 在分析零件图的基础上进行工艺分析,确定零件的加工方法(如采用的工夹具、装夹定位方法等)、加工线路(如对刀点、进给路线)及切削用量(如主轴转速、进给速度和背吃刀量等)等工艺参数。
3、数值计算 耕根据零件图的几何尺寸、确定的工艺路线及设定的坐标系,计算零件粗、精加工运动的轨迹,得到刀珐数据。对于形状比较简单的零件(如由直线和圆弧组成的零件)的轮廓加工,要计算几何元素的起点、终点、圆弧的圆心、两几何元素的交点或切点的坐标值,如果数控装置无刀具补偿功能,还要计算刀具中心的运动轨迹坐标。对于形状比较复杂的零件(如由非圆曲线、曲面组成的零件),需要用直线段或圆弧段逼近,根据加工精度的要求计算出节点坐标值,这种数值计算要用计算机来完成。
4、编写加工程序单 根据加工路线、切削用量、刀具号码、刀具补偿量、机床辅助动作及刀具运动轨迹,按照数控系统使用的指令代码和程序段的格式编写零件加工的程序单,并校核上述两个步骤的内容,纠正其中的错误。
5、制作控制介质 把编制好的程序单上的内容记录在控制介质上,作为数控装置的输入信息。通过程序的手工输入或通信传输送入数控系统。
6、程序校验与首件试切 编写的程序和制备好的控制介质,必须经过校验和试刀才能正式使用。效验的方法是直接将控制介质上的内容输入到数控系统中让机床空转,一检验机床的运动轨迹是否正确。在有CRT图形显示的数控机床上,用模拟刀具与工件切削过程的方法进行检验更为方便,但这些方法只能检验运动是否正确,不能检验被加工零件的加工精度。因此,还需要进行零件的首件试切。当发现有加工误差时,分析误差产生的原因,找出问题所在,加以修正,直至达到零件图纸的要求。
问题十:数控车床怎样编程? 其实不管是什么系统,它们的编程都是差不多的。下面有格式,只要学会他编程就会了。 G代码 组别 解释 ; G00 01 定位 (快速移动) ; G01 直线切削 ; . G02 顺时针切圆弧 (CW,顺时钟) ; G03 逆时针切圆弧 (CCW,逆时钟) ; G04 00 暂停 (Dwell) ; G09 停于精确的位置 ; G20 06 英制输入 ; G21 公制输入 ; G22 04 内部行程限位 有效 ; G23 内部行程限位 无效 ; G27 00 检查参考点返回 ; G28 参考点返回 ; G29 从参考点返回 ; G30 回到第二参考点 ;G32 01 切螺纹 G40 07 取消刀尖半径偏置 ; G41 刀尖半径偏置 (左侧) ; G42 刀尖半径偏置 (右侧) ; G50 00 修改工件坐标;设置主轴最大的 RPM ; G52 设置局部坐标系 ; G53 选择机床坐标系 ; G70 00 精加工循环 ; G71 内外径粗切循环 ; G72 台阶粗切循环 ; G73 成形重复循环 ; G74 Z 向步进钻削 ; G75 X 向切槽 ; G76 切螺纹循环 ; G80 10 取消固定循环 ; G83 钻孔循环 ; G84 攻丝循环 ; G85 正面镗孔循环 ; G87 侧面钻孔循环 ; G88 侧面攻丝循环 ; G89 侧面镗孔循环 ; G90 01 (内外直径)切削循环 ;G92 切螺纹循环 ; G94 (台阶) 切削循环 ; G96 12 恒线速度控制 ;
G97 恒线速度控制取消 ; G98 05 每分钟进给率; G99 每转进给率
代码解释
G00 定位
1. 格式 G00 X_ Z_ 这个命令把刀具从当前位置移动到命令指定的位置 (在绝对坐标方式下), 或者移动到某个距离处 (在增量坐标方式下)。 2. 非直线切削形式的定位 我们的定义是:采用独立的快速移动速率来决定每一个轴的位置。刀具路径不是直线,根据到达的顺序,机器轴依次停止在命令指定的位置。 3. 直线定位 刀具路径类似直线切削(G01) 那样,以最短的时间(不超过每一个轴快速移动速率)定位于要求的位置。 4. 举例 N10 G0 X100 Z65
G01 直线插补
1. 格式 G01 X(U)_ Z(W)_ F_ ;直线插补以直线方式和命令给定的移动速率从当前位置移动到命令位置。X, Z: 要求移动到的位置的绝对坐标值。U,W: 要求移动到的位置的增量坐标值。
2. 举例① 绝对坐标程序 G01 X50. Z75. F0.2 ;X100.; ② 增量坐标程序G01 U0.0 W-75. F0.2 ;U50.
圆弧插补 (G02, G03)
1. 格式 G02(G03) X(U)__Z(W)__I__K__F__ ;G02(G03) X(U)__Z(W)__R__F__ ;
G02 C 顺时钟 (CW)G03 C 逆时钟 (CCW)X, Z C在坐标系里的终点U, W C 起点与终点之间的距离I, K C 从起点到中心点的矢量 (半径值)R C 圆弧范围 (最大180 度)。2. 举例① 绝对坐标系程序G02 X100. Z90. I50. K0. F0.2或G02 X100. Z90. R50. F02;② 增量坐标系程序G02 U20. W-30. I50. K0. F0.2;或G02 U20. W-30. R50. F0.2;
......>>
数控钻床如何编程?
其实不管是什么系统,它们的编程都是差不多的。下面有格式,只要学会他编程就会了。\x0d\x0aG代码 组别 解释 :\x0d\x0aG00 01 定位 (快速移动) ; G01 直线切削 ; . \x0d\x0aG02 顺时针切圆弧 (CW,顺时钟) ;\x0d\x0aG03 逆时针切圆弧 (CCW,逆时钟) ; \x0d\x0aG04 00 暂停 (Dwell) ; \x0d\x0aG09 停于精确的位置 ; \x0d\x0aG20 06 英制输入 ; \x0d\x0aG21 公制输入 ; \x0d\x0aG22 04 内部行程限位 有效 ; \x0d\x0aG23 内部行程限位 无效 ; \x0d\x0aG27 00 检查参考点返回 ; \x0d\x0aG28 参考点返回 ; \x0d\x0aG29 从参考点返回 ; \x0d\x0aG30 回到第二参考点 ;\x0d\x0aG32 01 切螺纹 \x0d\x0aG40 07 取消刀尖半径偏置 ; \x0d\x0aG41 刀尖半径偏置 (左侧) ; \x0d\x0aG42 刀尖半径偏置 (右侧) ; \x0d\x0aG50 00 修改工件坐标;设置主轴最大的 RPM ; \x0d\x0aG52 设置局部坐标系 ; \x0d\x0aG53 选择机床坐标系 ; \x0d\x0aG70 00 精加工循环 ; \x0d\x0aG71 内外径粗切循环 ; \x0d\x0aG72 台阶粗切循环 ; \x0d\x0aG73 成形重复循环 ; \x0d\x0aG74 Z 向步进钻削 ; \x0d\x0aG75 X 向切槽 ; \x0d\x0aG76 切螺纹循环 ; \x0d\x0aG80 10 取消固定循环 ; \x0d\x0aG83 钻孔循环 ; \x0d\x0aG84 攻丝循环 ; \x0d\x0aG85 正面镗孔循环 ; \x0d\x0aG87 侧面钻孔循环 ; \x0d\x0aG88 侧面攻丝循环 ; \x0d\x0aG89 侧面镗孔循环 ; \x0d\x0aG90 01 (内外直径)切削循环 ;\x0d\x0aG92 切螺纹循环 ; \x0d\x0aG94 (台阶) 切削循环 ; \x0d\x0aG96 12 恒线速度控制 ;\x0d\x0aG97 恒线速度控制取消 ; \x0d\x0aG98 05 每分钟进给率; \x0d\x0aG99 每转进给率 \x0d\x0a\x0d\x0a 代码解释\x0d\x0aG00 定位\x0d\x0a\x0d\x0a格式 G00 X_ Z_ 这个命令把刀具从当前位置移动到命令指定的位置 (在绝对坐标方式下), 或者移动到某个距离处 (在增量坐标方式下)。 2. 非直线切削形式的定位 我们的定义是:采用独立的快速移动速率来决定每一个轴的位置。刀具路径不是直线,根据到达的顺序,机器轴依次停止在命令指定的位置。 3. 直线定位 刀具路径类似直线切削(G01) 那样,以最短的时间(不超过每一个轴快速移动速率)定位于要求的位置。 4. 举例 N10 G0 X100 Z65\x0d\x0a G01 直线插补\x0d\x0a 1. 格式 G01 X(U)_ Z(W)_ F_ ;直线插补以直线方式和命令给定的移动速率从当前位置移动到命令位置。X, Z: 要求移动到的位置的绝对坐标值。U,W: 要求移动到的位置的增量坐标值。 \x0d\x0a 2. 举例① 绝对坐标程序 G01 X50. Z75. F0.2 ;X100.; ② 增量坐标程序G01 U0.0 W-75. F0.2 ;U50. \x0d\x0a 圆弧插补 (G02, G03)\x0d\x0a 1. 格式 G02(G03) X(U)__Z(W)__I__K__F__ ;G02(G03) X(U)__Z(W)__R__F__ ; \x0d\x0a G02 _ 顺时钟 (CW)G03 _ 逆时钟 (CCW)X, Z _在坐标系里的终点U, W _ 起点与终点之间的距离I, K _ 从起点到中心点的矢量 (半径值)R _ 圆弧范围 (最大180 度)。2. 举例① 绝对坐标系程序G02 X100. Z90. I50. K0. F0.2或G02 X100. Z90. R50. F02;② 增量坐标系程序G02 U20. W-30. I50. K0. F0.2;或G02 U20. W-30. R50. F0.2; \x0d\x0a 第二原点返回 (G30)\x0d\x0a 坐标系能够用第二原点功能来设置。 1. 用参数 (a, b) 设置刀具起点的坐标值。点 “a” 和 “b” 是机床原点与起刀点之间的距离。 2. 在编程时用 G30 命令代替 G50 设置坐标系。 3. 在执行了第一原点返回之后,不论刀具实际位置在那里,碰到这个命令时刀具便移到第二原点。 4. 更换刀具也是在第二原点进行的。\x0d\x0a 切螺纹 (G32)\x0d\x0a 1. 格式 G32 X(U)__Z(W)__F__ ; G32 X(U)__Z(W)__E__ ; F _螺纹导程设置 E _螺距 (毫米) 在编制切螺纹程序时应当带主轴转速RPM 均匀控制的功能 (G97),并且要考虑螺纹部分的某些特性。在螺纹切削方式下移动速率控制和主轴速率控制功能将被忽略。而且在送进保持按钮起作用时,其移动进程在完成一个切削循环后就停止了。 2. 举例 G00 X29.4; (1循环切削) G32 Z-23. F0.2; G00 X32; Z4.; X29.;(2循环切削) G32 Z-23. F0.2; G00 X32.; Z4. 刀具直径偏置功能 (G40/G41/G42)\x0d\x0a 1. 格式 G41 X_ Z_;G42 X_ Z_;\x0d\x0a 在刀具刃是尖利时,切削进程按照程序指定的形状执行不会发生问题。不过,真实的刀具刃是由圆弧构成的 (刀尖半径) 就像上图所示,在圆弧插补和攻螺纹的情况下刀尖半径会带来误差。2. 偏置功能\x0d\x0a命令 切削位置 刀具路径 \x0d\x0a G40 取消 刀具按程序路径的移动 \x0d\x0a G41 右侧 刀具从程序路径左侧移动 \x0d\x0aG42 左侧 刀具从程序路径右侧移动 \x0d\x0a 补偿的原则取决于刀尖圆弧中心的动向,它总是与切削表面法向里的半径矢量不重合。因此,补偿的基准点是刀尖中心。通常,刀具长度和刀尖半径的补偿是按一个假想的刀刃为基准,因此为测量带来一些困难。把这个原则用于刀具补偿,应当分别以 X 和 Z 的基准点来测量刀具长度刀尖半径 R,以及用于假想刀尖半径补偿所需的刀尖形式数 (0-9)。这些内容应当事前输入刀具偏置文件。\x0d\x0a “刀尖半径偏置” 应当用 G00 或者 G01功能来下达命令或取消。不论这个命令是不是带圆弧插补, 刀不会正确移动,导致它逐渐偏离所执行的路径。因此,刀尖半径偏置的命令应当在切削进程启动之前完成; 并且能够防止从工件外部起刀带来的过切现象。反之,要在切削进程之后用移动命令来执行偏置的取消过 \x0d\x0a工件坐标系选择(G54-G59)\x0d\x0a 1. 格式 G54 X_ Z_; 2. 功能 通过使用 G54 _ G59 命令,来将机床坐标系的一个任意点 (工件原点偏移值) 赋予 1221 _ 1226 的参数,并设置工件坐标系(1-6)。该参数与 G 代码要相对应如下: 工件坐标系 1 (G54) ---工件原点返回偏移值---参数 1221 工件坐标系 2 (G55) ---工件原点返回偏移值---参数 1222 工件坐标系 3 (G56) ---工件原点返回偏移值---参数 1223 工件坐标系 4 (G57) ---工件原点返回偏移值---参数 1224 工件坐标系 5 (G58) ---工件原点返回偏移值---参数 1225 工件坐标系 6 (G59) ---工件原点返回偏移值---参数 1226 在接通电源和完成了原点返回后,系统自动选择工件坐标系 1 (G54) 。在有 “模态”命令对这些坐标做出改变之前,它们将保持其有效性。 除了这些设置步骤外,系统中还有一参数可立刻变更G54~G59 的参数。工件外部的原点偏置值能够用 1220 号参数来传递。\x0d\x0a精加工循环(G70)\x0d\x0a 1. 格式 G70 P(ns) Q(nf) ns:精加工形状程序的第一个段号。 nf:精加工形状程序的最后一个段号 2. 功能 用G71、G72或G73粗车削后,G70精车削。 \x0d\x0a 外园粗车固定循环(G71)\x0d\x0a 1. 格式 G71U(△d)R(e)G71P(ns)Q(nf)U(△u)W(△w)F(f)S(s)T(t)N(ns)?????.F__从序号ns至nf的程序段,指定A及B间的移动指令。.S__.T__N(nf)??△d:切削深度(半径指定)不指定正负符号。切削方向依照AA’的方向决定,在另一个值指定前不会改变。FANUC系统参数(NO.0717)指定。e:退刀行程本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0718)指定。ns:精加工形状程序的第一个段号。nf:精加工形状程序的最后一个段号。△u:X方向精加工预留量的距离及方向。(直径/半径)△w: Z方向精加工预留量的距离及方向。 \x0d\x0a 2. 功能如果在下图用程序决定A至A’至B的精加工形状,用△d(切削深度)车掉指定的区域,留精加工预留量△u/2及△w。\x0d\x0a端面车削固定循环(G72)\x0d\x0a 1. 格式 G72W(△d)R(e) G72P(ns)Q(nf)U(△u)W(△w)F(f)S(s)T(t) △t,e,ns,nf, △u, △w,f,s及t的含义与G71相同。 2. 功能 如下图所示,除了是平行于X轴外,本循环与G71相同。 \x0d\x0a 成型加工复式循环(G73)\x0d\x0a 1. 格式 G73U(△i)W(△k)R(d)G73P(ns)Q(nf)U(△u)W(△w)F(f)S(s)T(t)N(ns)???????沿A A’ B的程序段号N(nf)???△i:X轴方向退刀距离(半径指定), FANUC系统参数(NO.0719)指定。△k: Z轴方向退刀距离(半径指定), FANUC系统参数(NO.0720)指定。d:分割次数这个值与粗加工重复次数相同,FANUC系统参数(NO.0719)指定。ns: 精加工形状程序的第一个段号。nf:精加工形状程序的最后一个段号。△u:X方向精加工预留量的距离及方向。(直径/半径)△w: Z方向精加工预留量的距离及方向。 \x0d\x0a 2. 功能本功能用于重复切削一个逐渐变换的固定形式,用本循环,可有效的切削一个用粗加工段造或铸造等方式已经加工成型的工件。\x0d\x0a 端面啄式钻孔循环(G74)\x0d\x0a 1. 格式 G74 R(e); G74 X(u) Z(w) P(△i) Q(△k) R(△d) F(f) e:后退量 本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0722)指定。 x:B点的X坐标 u:从a至b增量 z:c点的Z坐标 w:从A至C增量 △i:X方向的移动量 △k:Z方向的移动量 △d:在切削底部的刀具退刀量。△d的符号一定是(+)。但是,如果X(U)及△I省略,可用所要的正负符号指定刀具退刀量。 f:进给率: 2. 功能 如下图所示在本循环可处理断削,如果省略X(U)及P,结果只在Z轴操作,用于钻孔。 \x0d\x0a 外经/内径啄式钻孔循环(G75)\x0d\x0a 1. 格式 G75 R(e); G75 X(u) Z(w) P(△i) Q(△k) R(△d) F(f) 2. 功能 以下指令操作如下图所示,除X用Z代替外与G74相同,在本循环可处理断削,可在X轴割槽及X轴啄式钻孔。 \x0d\x0a 螺纹切削循环(G76)\x0d\x0a 1. 格式 G76 P(m)(r)(a) Q(△dmin) R(d)G76 X(u) Z(w) R(i) P(k) Q(△d) F(f)m:精加工重复次数(1至99)本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0723)指定。r:到角量本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0109)指定。a:刀尖角度:可选择80度、60度、55度、30度、29度、0度,用2位数指定。本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0724)指定。如:P(02/m、12/r、60/a)△dmin:最小切削深度本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0726)指定。i:螺纹部分的半径差如果i=0,可作一般直线螺纹切削。k:螺纹高度这个值在X轴方向用半径值指定。△d:第一次的切削深度(半径值)l:螺纹导程(与G32) \x0d\x0a 2. 功能螺纹切削循环。 \x0d\x0a 内外直径的切削循环(G90)\x0d\x0a 1. 格式 直线切削循环:G90 X(U)___Z(W)___F___ ;按开关进入单一程序块方式,操作完成如图所示 1→2→3→4 路径的循环操作。U 和 W 的正负号 (+/-) 在增量坐标程序里是根据1和2的方向改变的。锥体切削循环:G90 X(U)___Z(W)___R___ F___ ;必须指定锥体的 “R” 值。切削功能的用法与直线切削循环类似。 \x0d\x0a 2. 功能外园切削循环。1. U0, W03. U04. U>0, W<0, R<0\x0d\x0a 切削螺纹循环 (G92)\x0d\x0a 1. 格式 直螺纹切削循环: G92 X(U)___Z(W)___F___ ; 螺纹范围和主轴 RPM 稳定控制 (G97) 类似于 G32 (切螺纹)。在这个螺纹切削循环里,切螺纹的退刀有可能如 [图 9-9] 操作;倒角长度根据所指派的参数在0.1L~ 12.7L的范围里设置为 0.1L 个单位。 锥螺纹切削循环: G92 X(U)___Z(W)___R___F___ ; 2. 功能 切削螺纹循环 \x0d\x0a 台阶切削循环 (G94)\x0d\x0a 1. 格式 平台阶切削循环: G94 X(U)___Z(W)___F___ ; 锥台阶切削循环: G94 X(U)___Z(W)___R___ F___ ; 2. 功能 台阶切削 线速度控制 (G96, G97)\x0d\x0a NC 车床用调整步幅和修改 RPM 的方法让速率划分成,如低速和高速区;在每一个区内的速率可以自由改变。 G96 的功能是执行线速度控制,并且只通过改变RPM 来控制相应的工件直径变化时维持稳定的切削速率。 G97 的功能是取消线速度控制,并且仅仅控制 RPM 的稳定。 \x0d\x0a 设置位移量 (G98/G99)\x0d\x0a 切削位移能够用 G98 代码来指派每分钟的位移(毫米/分),或者用 G99 代码来指派每转位移(毫米/转);这里 G99 的每转位移在 NC 车床里是用于编程的。 每分钟的移动速率 (毫米/分) = 每转位移速率 (毫米/转) x 主轴 RPM\x0d\x0a补充:数控钻床主要用于钻孔、扩孔、铰孔、攻丝等加工。在汽车、机车、造船、航空航天、工程机械行业;尤其对于超长型叠板,纵梁、结构钢、管型件等多孔系富源成海的各类大型零件的钻孔加工当为首选。
数控钻床的编程需要掌握以下知识:1. 具体的钻孔顺序和位置,包括孔径和深度。2. 编程,常用的有G代码和M代码。G代码用于指定运动方式和坐标系统;M代码用于控制辅助设备和程序循环。3. 设备参数的设置,包括钻孔深度、进给速度、转速、切削液供应等。具体编程步骤如下:1. 根据工件要求制定钻孔方案,确定钻孔的位置和尺寸。2. 在计算机端编写控制程序,使用G代码和M代码描述钻孔的相关参数和动作。3. 将程序上传至数控钻床的控制器中。可以通过数控编程软件或USB接口等方法进行传输。4. 将工件安装在数控钻床工作台上,并将钻头装到钻头夹头上。5. 运行数控钻床,根据程序提示进行操作,启动自动操作,机器会自动进行钻孔工作。6. 检查钻孔结果是否符合要求,如需要返修,修改程序,再次进行钻孔。需要注意的是,数控钻床编程需要有一定的专业知识和经验,建议由专业人员进行编程。同时,钻孔参数和程序都要仔细检查和确认,以保证钻孔效果和安全。
数控机床是怎么样编程操作的??
1.是编程 (学会自主编程,如果有普通车床的基础,要进入数控那就比较容易了。如果没有普通车床的加工基础,那就得买些相关数控的书籍看看,多了解、多看例题。更要熟悉常用的指令如:)
2.是操作。下载个数控仿真系统做一些练习。
既然是新手,就要先去了解一下数控的基本知识。了解数控设备的重要保养及安全使用。
要学会自主编程,如果有普通车床的基础,要进入数控那就比较容易了。
如果没有普通车床的加工基础,那就得买些相关数控的书籍看看,多了解、多看例题。更要熟悉常用的指令如:(G01\G02\G03\G90\G71\G72\G73\G70)。
数控机床的编程和操作主要包括以下几个步骤:
制定加工方案:根据产品要求和机床性能,制定加工方案,确定刀具、夹具和加工参数等。
编写加工程序:在计算机上使用数控编程软件编写加工程序,包括G代码和M代码。G代码主要指机床运动轨迹及其速度、方向、插补方式等信息,而M代码则主要表示机床附件的启停、换刀、润滑等功能指令。
转换坐标系:将零件图纸中的坐标系转换为机床坐标系,并确定各个轴的起点和终点位置。
输入程序:将编好的加工程序输入到数控机床的控制器中,可以采用U盘、网络传输、串行通信等方式进行。
运行程序:启动数控机床,通过控制器对机床进行自动控制和调整,完成加工过程。在这个过程中,需要对机床进行实时监控和调整,以便保证加工精度和稳定性。
检查成品:在加工完成后,对成品进行检查和测试,确保其质量符合要求。
总之,在数控机床的编程和操作过程中,需要严格按照加工方案和技术要求进行操作,并遵守相应的安全规范和操作规程,以保证加工效果。同时,也需要不断优化加工方案和加工程序,提高生产效率和加工精度。
简述数控编程的内容和步骤?
数控机床程序编制的内容:零件加工顺序,刀具与工件相对运动轨迹的尺寸数据,工艺参数以及辅助操作等加工信息。
编程步骤:分析零件图纸及工艺处理,数学处理,编写零件加工程序单、制作介质,进行程序检验。数控机床主要由输入/输出设备、数控装置、伺服系统、辅助控制装置、检测反馈装置和机床本体组成。