当前位置:首页 > 技能知识 > 正文

大数据营销案例,互联网营销发展分析及案例

技能知识 · Nov 01, 2023

本文目录一览:

企业大数据实战案例

企业大数据实战案例
一、家电行业
  以某家电公司为例,它除了做大家熟知的空调、冰箱、电饭煲外,还做智能家居,产品有成百上千种。在其集团架构中,IT部门与HR、财务等部门并列以事业部形式运作。
  目前家电及消费电子行业正值“内忧外患”,产能过剩,价格战和同质化现象严重;互联网企业涉足,颠覆竞争模式,小米的“粉丝经济”,乐视的“平台+内容+终端+应用”,核心都是经营“用户”而不是生产。该公司希望打造极致产品和个性化的服务,将合适的产品通过合适的渠道推荐给合适的客户,但在CPC模型中当前只具备CP匹配(产品渠道),缺乏用户全景视图支持,无法打通“CP(客户产品)”以及“CC(客户渠道)”的匹配。
  基于上述内外环境及业务驱动,该公司希望将大数据做成所有业务解决方案的枢纽。以大数据DMP作为企业数据核心,充分利用内部数据源、外部数据源,按照不同域组织企业数据,形成一个完整的企业数据资产。然后,利用此系统服务整个企业价值链中的各种应用。
  那么问题来了,该公司的数据分散在不同的系统中,更多的互联网电商数据分散在各大电商平台,无法有效利用,怎么解决?该公司的应对策略是:1)先从外部互联网数据入手,引入大数据处理技术,一方面解决外部互联网电商数据利用短板,另一方面可以试水大数据技术,由于互联网数据不存在大量需要内部协调的问题,更容易快速出效果;2)建设DMP作为企业统一数据管理平台,整合内外部数据,进行用户画像构建用户全景视图。
  一期建设内容:技术实现上通过定制Spark爬虫每天抓取互联网数据(主要是天猫、京东、国美、苏宁、淘宝上的用户评论等数据),利用Hadoop平台进行存储和语义分析处理,最后实现“行业分析”、“竞品分析”、“单品分析” 三大模块。
  该家电公司大数据系统一期建设效果,迅速在市场洞察、品牌诊断、产品分析、用户反馈等方面得到体现。
  二期建设目标:建设统一数据管理平台,整合公司内部系统数据、外部互联网数据(如电商数据)、第三方数据(如外部合作、塔布提供的第三方消费者数据等)。
  该公司大数据项目对企业的最大价值是将沉淀的数据资产转化成生产力。IT部门,通过建设企业统一的数据管理平台,融合企业内外部数据,对于新应用快速支持,起到敏捷IT的作用;业务部门,通过产品、品牌、行业的洞察,辅助企业在产品设计、广告营销、服务优化等方面进行优化改进,帮助企业进行精细化运营,基于用户画像的精准营销和个性化推荐,帮助企业给用户打造极致服务体验,提升客户粘性和满意度;战略部门,通过市场和行业分析,帮助企业进行产品布局和战略部署。
  二、快消行业
  以宝洁为例,在与宝洁中国市场部的合作中发现,并不是一定要先整合内外部数据才能做用户画像和客户洞察。宝洁抓取了主流网站上所有与宝洁评价相关的数据,利用语义分析和建模,掌握不同消费群体的购物喜好和习惯,仅仅利用外部公开数据,快速实现了客户洞察。
  此外,宝洁还在渠道管理上进行创新。利用互联网用户评论数据进行社群聆听,监控与宝洁合作的50个零售商店相关的用户评论,通过线上数据进行渠道/购物者研究并指导渠道管理优化。
  实现过程:
  1、锁定微博、大众点评等互联网数据源,采集百万级别消费者谈及的与宝洁购物相关内容;
  2、利用自然语言处理技术,对用户评论进行多维建模,包括购物环境、服务、价值等10多个一级维度和50个二级维度,实现对用户评论的量化;
  3、对沃尔玛、屈臣氏、京东等50个零售渠道进行持续监控,结果通过DashBoard和周期性分析报告呈现。
  因此,宝洁能够关联企业内部数据,更有效掌握KA渠道整体情况,甚至进一步掌握KA渠道的关键细节、优势与劣势,指导渠道评级体系调整,帮助制定产品促销规划。
  三、金融行业
  对于消费金融来说,家电、快消的案例也是适用的,尤其是精准营销、产品推荐等方面。这里主要分享征信风控方面的应用。显然,互联网金融如果对小额贷款都像银行一样做实地考察,并投入大量人力进行分析评判的话,成本是很高的,所以就有了基于大数据的批量的信用评分模型。最终目的也是实现企业画像和企业中的关键人物画像,再利用数据挖掘、数据建模的方法建立授信模型。宜信的宜人贷、芝麻信用等本质上就是这个架构。
  在与金融客户的接触中发现,不论银行还是金融公司,对外部数据的需求都越发迫切,尤其是外部强特征数据,比如失信记录、第三方授权后的记录、网络行为等。
以上是小编为大家分享的关于企业大数据实战案例的相关内容,更多信息可以关注环球青藤分享更多干货

如何利用大数据做到对客户的精准营销

大数据营销等同于精准营销,或是精准营销是大数据营销的一个核心方向和价值体现。然而,数据本身不会产生价值。为此,我们要把数据组织成数据资源体系,再对数据进行层次、类别等方面的划分。在此基础上,通过分析数据资源和相关部门的业务对接程度,以此发挥数据资源体系在管理、决策、监测及评价等方面的作用,从而产生大数据的大价值,真正实现了从数据到知识的转变,为领导决策提供服务依据本例根据工作实践。
本例以三个工作实例,展示如何通过对数据分析进行对客户的精准营销。
工具/原料
大数据营销
大数据营销三个案例分析
案例一:笔者在银行工作,通过对储户身份证信息进行海量剖析,发现一个有趣的现象,即购买理财产品的客户以40-50岁的女性居多。
根据这一信息,有经验的理财经理通过身份证信息即能准确的分析出支行有哪些符合条件的客户,迅速的对新推出的理财产品进行电话营销,做到不出门即可实现销售,较快的完成了销售任务。
而另一些更具创新性的理财经理,通过身份证信息,在情人节期间组织了网点沙龙客户邀约活动,对符合18-30岁、30-45岁这两个年龄段的男性客户进行了电话营销,通过赠送爱人鲜花、化妆品以及高价值的礼品进行金融产品营销,较好的引起男性客户的兴趣,有力的拉升了业绩增长。
这些数据分析手段就能够做到个性化营销和定位,加强对客户的认知,为客户找到价值,从而带动销量。
案例二:在与供电部门合作期间,供电部门提供了一条信息,市里每一天上网高峰期主要集中在中午12点之后和晚上的12点之前。供电部门认为,出现这种“怪现象”的原因是因为现在的人们普遍睡觉前都会有上网的习惯。
这条信息当时很多人没有注意,似乎与银行搭不上关系,但我们市场经营部门的一个年轻的大学生针对人们这种“强迫症”,通过手机银行与商家合作,在晚上12点进行促销秒杀活动,即推动了手机银行业务量的提升,同时也带动商家销量的倍增,实现了双赢。
案例三:在为企业代发工资数据中,我们曾发现一个现象,即一般企业员工代发帐户每月都会沉淀一定的余额,金额不大,1000元也有,几千的也有,长期不动的也有,活期利率很低,但是这些客户的帐户金额又达不到理财产品的起售金额,这些客户工资用了也就用了,成了“月光族”,没有理财理念。
如何通过分析这些数据信息直接进行客源组织,为这些具有相同需求的人群量身定做金融服务,并享受”一客(群)一策“的定制服务,我们进行专题研究。
最终,我们在零存整取、基金定投和适时到帐理财产品上进行了产品打包宣传,同步利用信用卡宣传,几场现场专题沙龙下来,引起了不少企业员工的注意和兴趣,着实为这些收入不高的人群提供了一条实实在在的理财渠道。
这三个小故事就是对历史数据进行挖掘的结果,反映的是数据层面的规律,它通过对大量的数据系统中提取、整合有价值的数据,从而实现从数据到知识、从信息到知识、从知识到利润的转化。
简单来说就是:5个合适,在合适的时间、合适的地点、将合适的产品以合适的方式提供给合适的人。
5
具体来讲,当我们通过对完成数据分析之后,找出相同的规律,当然还有一些个性化数据体现,为此具体的应用场景需要根据企业、业务的具体情况进行精准营销策划、设计。
概括来讲,我们需要以下三个步骤:
第一步:数据采集,了解用户,通过收集用户所有的数据,主要包括静态信息数据、动态信息数据两大类,静态数据就是用户相对稳定的信息,如性别、地域、职业、消费等级等,动态数据就是用户不停变化的行为信息,如消费习惯、购买行为等;
第二步:分析这些数据,给客户画像,画像代表客户对营销内容有兴趣、偏好、需求等,分析推算客户的兴趣程度、需求程度、购买概率等;
第三步,也就是最后一步,将这些画面综合起来,拼成一张较为完整的图,这样我们对客户就有了一个大概的了解。

有没有一个有具体数据的大数据营销案例

百事可乐利用大数据分析签约吴莫愁
“百事可乐选择吴莫愁做代言,是通过大数据的高性能分析得出的结果。”事实上,吴莫愁一出道便颇具争议,但从大数据来分析,这些争议仅限于每位观众对她不同的感觉,而不是她自身的绯闻。在查看这些数据后,百事公司发现,吴莫愁具有相当高的美誉度,并且个性鲜明、带有很强的新生代印记,这成为百事选择吴莫愁的另一个要素。
通过大数据分析促成的这笔签约,也让双方获得双赢的结果。在成功代言百事广告的2013年,吴莫愁跻身“年度华语女歌手吸金榜”第一位,同时,“吴莫愁代言百事”的相关检索量快速攀升,从而带动了百事品牌关注度的增长。
参考:

大数据洞察有哪些特色,大数据营销案例,大数据企业

特色案例分析:
1、浪潮GS助力广安集团一猪一ID强化食品安全
作为辐射全国的农牧企业集团,多年来广安集团一直企业信息化进程与企业发展需求不匹配的问题。2013年,广安集团引入浪潮GS,采用单件管理系统,通过一猪一ID对其成长周期进行全过程监控,促使食品安全可追溯,实现饲养流程精细化、集约化管理,使每年饲料节约了2成左右,为广安的智慧企业养成之路奠定了基础。
2、华为大数据一体机服务于北大重点实验室
经过大量的前期调查,比较和分析准备工作,北大重点实验室选择了华为基于高性能服务器RH5885V2的HANA数据处理平台。HANA提供的对大量实时业务数据进行快速查询和分析以及实时数据计算等功能,在很大程度上得益于华为RH5885 V2服务器的高可靠、高性能和高可用性的支撑。
3、神州数码助张家港市更”智慧”
在张家港实践的城市案例中,市民登录由”神州数码”研发的市民公共信息服务平台后,只要凭借自己的身份证和密码,即可通过该系统平台进行240余项”在线预审”服务、130余项”网上办事”服务等,还可通过手机及时查看办事状态。相比于以前来说,市民办事的时间最少可以节省一半以上。
4、中科曙光助同济大学科研领域再创新高
为了满足爆炸式增长的用户和数据量,同济大学携手中科曙光,在全面整合云计算平台和现有资产的基础上,采用 DS800-F20存储系统、Gridview集群管理系统,以及Hadoop分布式计算平台构建出了业内领先的大数据柔性处理平台,使得同济大学在信息学科及其交叉学科研究领域迈上一个新台阶。
5、中国电信基于物联网的智能公交解决方案
中国电信提出了基于物联网的智能公交应用整体解决方案。该方案紧密结合公交行业特点,涵盖了全球眼视频监控系统、GPS定位调度系统、无线数据采集系统等技术,是基于物联网技术的公交行业车辆监控调度管理综合性解决方案。中国电信智能交通系统利用物联网技术,提高了公交系统中的人(乘客、司乘人员、管理人员)、公交设施(道路、场站等)和公交车辆等之间的有机联系,从而最佳地利用了交通系统的时空资源,通过信息资源的合理开发、利用和整合,提高了公交行业运行效率,改善了服务质量,为应对重大突发事件提供了必要的手段,在公交公司的科学运营管理、安全监控等方面发挥了重要的作用,物联网的应用已成为公交业务发展的必然趋势。
6、明略数据为税务部门构建的可视化涉税分析平台
税务系统的数据在很长时间内大量来自于纳税人的申报行为数据和报表数据,面向税务工作人员的是割裂的不同业务系统,信息本身被业务消解为固定的逻辑和处理形式。明略数据为税务部门构建的可视化涉税分析平台定位为面向税务部门的数据服务产品。产品充分利用明略底层大数据平台相关技术,数据挖掘建模技术及明略税务行业研究专家对税源管理专业化,风险控制精细化,决策分析智能化的理解,搭建以分析预测为核心的数据应用平台,以帮助税务部门征管工作更有效、更全面、更精细化的展开。
7、悠易互通汽车行业大数据经验助奥迪品荐二手车
2015年,奥迪品荐二手车项目通过悠易互通程序化购买平台进行为期5个月的推广活动,传播受众主要以男性以及已有奥迪车主为主,悠易互通规划的投放策略是,首先,通过人群标签及关键词,对精准受众人群进行全网竞价;其次,对以上竞价成功人群进行优化召回,分析以提高下一轮竞价成功率;根据悠易互通汽车行业大数据经验,消费者的行为路径为”兴趣-认知考虑-转化”,程序化购买可以通过人群召回的方式将流失人群引导到下一环节,从而促进转化可能。最终投放结果显示,悠易互通通过以上策略高效达成客户KPI,曝光量超过预估13%,点击量超过KPI 26%,注册量高达163%。
8、东风风神大数据”动”悉全系目标受众,打破传统促销方式
派择科技应用底层行为数据管理平台Action DMP支招东风风神全系营销推广活动, Action DMP实现全网用户行为元数据、应用元数据、场景元数据的实时无损解析,精准捕获各车型目标受众;通过分析用户行为场景,了解他们的触媒习惯,展开品牌与用户定制化沟通,其中也包括个性化创意载体与沟通渠道组合。项目最终CPL成本较目标降低40%。
9、智子云大数据挖掘助苏宁易购访客”回心转意”之路
苏宁易购期望通过智子云的VRM模型对到站/进APP的流失访客进行精细划分,并借助DSP精准定向能力跨屏锁定目标人群,找回流失访客。首先,建立数据仓库;其次智子云个性化推荐引擎Rec-Engine;智子云智能动态出价引擎Delta-Engine;智子云全网跨屏LBS定向引擎Loc-Engine不但支持多屏、跨屏投放,还能从访客转化率、媒体、地理位置、时段、设备类型、设备号等多个维度建立访客转化率预测模型和商品推荐模型;最后,重定向投放,针对每一个到访访客计算广告点击率和到站转化率,然后通过自动聚类算法将访客人群分档打分,对不同分值的人群,在综合媒体环境、竞价成功率等因素后,进行实时差异化出价。最终,本次活动找回苏宁易购的流失访客9,572,163次,并促成36,748个直接有效订单;最终投资回报率>3。
10、 “优衣·幸运·穿回家”优衣库2016春节场景营销OxO
2016年,优衣库中国推出了”优衣·幸运·穿回家”的春节主题活动,融入”LifeWear服适人生”品牌理念。结合大数据分析规模化的消费者共性,合适的移动媒介精准传播,借助自媒体传播,连接到店体验。制定优质的移动媒介策略,结合自媒体、网络广告、社交媒体平台、零售店和微信支付,精准覆盖受众,,一系列线上活动让优衣库品牌和冬春装产品形象直达人心,有效地将线下用户带到线上参与互动并积极分享,实现OxO导流,收获了比较理想的品牌营销和销售增长效果。

大数据时代,招商快车十大精准营销案例

大数据时代,招商快车十大精准营销案例
2015年,招商快车——中国最大全渠道大数据营销服务供应商大动作频频,先后与志高、蒙牛、迪士尼、茅台集团、太太乐、三九集团、长松咨询、上海证大、昂立教育、优速通达十大知名品牌达成深度战略合作——从企业营销代运营到大数据精准营销匹配服务。截止目前,招商快车销售额同比增长350%,一线合作企业占比60%,势态喜人。互联网+大数据时代的来临,招商快车勇于突破,敢于先行,DSP商机速配平台、DMP数据营销平台应运而生,全渠道大数据营销服务供应商驻足当代。
  2015年是“互联网+”发展的元年,李克强总理在两会期间提出“互联网+”行动计划,互联网首次写入国家政策纲要,标志着互联网产业在新常态经济下的重要作用。随着互联网+战略的不断深化,大数据的话题在新媒体环境下裂变式传播,大数据一词也慢慢被大众所熟知,特别是在“云计算”和“物联网”的广泛应用,大数据的价值越来越受重视和关注。2015年9月5日,国务院发布的《促进大数据发展行动纲要》,全面推进大数据发展和应用;奥巴马的竞选团队依据选民的微博,实时分析选民对总统竞选人的喜好,无不标志着大数据时代的到来。
  思路决定出路。大数据时代如山洪猛兽滚滚而来,招商快车基于超过2000万的渠道商、创业者精准数据库,截止日前,招商快车已完成超过2000万IT软硬件设备升级的投入,打造以DSP商机速配平台为核心、以DMP营销数据平台为有力支撑的两大超级平台。依托大数据营销智能化应用、服务,致力于为处于不同生命周期的中国企业,围绕营销及金融价值链中所产生的商业困惑,提供一站式商业模式定位、渠道系统建设、营销内核构造、营销教练、营销外包、O2O解决方案、全网营销、微商解决方案、DMP营销数据应用、DSP商机速配服务、金融增值服务等全渠道大数据营销服务。
  十大精准营销案例。由于商业模式成功升级以及IT软硬件设备的成功导入,招商快车先后与志高、蒙牛、迪士尼、茅台集团、太太乐、三九集团、长松咨询、上海证大、昂立教育、优速通达十多家国内外知名企业达成深度合作,销售额同比增长350%,一线品牌企业客户占比60%,创下历史新高。
  
(2015招商快车十大经典案例)
  以志高为例,招商快车结合双方知名度及影响力,为志高制定“互联网+家电+大数据营销”战略,一、提供营销拓展代运营服务;二、依托招商快车DMP营销数据平台为志高提供大数据营销配套;三、全渠道招商落地执行,帮助志高扩大国内外市场占有率,持续推进志高集团由“中国制造”向“中国创造”产业升级。
  大数据时代背景下的全球经济,是一场以信息科技为核心的商业革命,它将颠覆传统经济形式、重构全球经济格局新兴产业链。招商快车成功升级商业模式,致力于帮助中国企业提高生产力、降低运营成本,减少运营盲区,使资源配置合理化,经济效益最大化,从而实现国民经济与商业价值的战略双赢。
以上是小编为大家分享的关于大数据时代,招商快车十大精准营销案例的相关内容,更多信息可以关注环球青藤分享更多干货

你在日常生活中看到了哪些大数据的成功应用案例?该应用案例中是如何体现大数

在日常生活中,我们可以看到许多成功的大数据应用案例,展示了大数据如何应用于不同领域的常见的例子包括:零售业、金融业、健康医疗、城市规划、社交媒体与营销、物流与运输。
1、零售业:大型零售商利用销售数据、顾客行为数据和供应链数据进行分析,以实现更精准的市场定位、优化库存管理和提供个性化的商品推荐。
2、金融业:银行和保险公司利用大数据分析客户的信用风险、投资偏好和欺诈行为,以更好地评估风险、制定个性化的金融产品和提供精准的欺诈检测。
3、健康医疗:医疗机构利用病人的电子病历、医学图像和基因组数据进行分析,以辅助疾病诊断、个性化治疗和药物研发。
4、城市规划:政府和城市规划者使用大数据分析交通流量、能源使用和环境污染等数据,以优化交通系统、减少能源消耗和改善公共服务。
5、社交媒体与营销:社交媒体平台通过分析用户行为、趋势和兴趣,为广告商提供精准的广告投放和品牌推广。
6、物流与运输:物流公司利用大数据分析实时交通状况、货车运力和物流供应链数据,以提高运输效率、降低成本和优化运输路线。
在这些案例中,大数据的应用体现在对庞大的数据量进行收集、存储和分析,从中提取有价值的信息和洞察。这些信息和洞察能够帮助企业和组织做出更明智的决策,优化运营流程,提供个性化的产品和服务,从而实现更好的业务成果和用户体验。
大数据应用是指将海量的数据收集、存储、加工和分析,以帮助企业和组织做出更明智的决策、优化运营流程、提供个性化的产品和服务以及改善用户体验等方面的应用。在当今数字化时代,随着各种传感器和设备的普及,人们在日常生活中不断地产生大量的数据,如社交媒体上的评论、商品的购买历史、电子邮件和通讯记录、医疗健康信息等等。
常见的大数据应用场景
1、金融风险管理:利用大数据技术对市场波动、客户信用风险、欺诈行为等进行分析和预测,以实现更好的风险管理和监测。
2、零售和电商:利用大数据技术分析消费者的购物模式、偏好和行为等,以提高销售额和用户满意度。
3、医疗保健:利用大数据技术对患者病历、医学图像和基因组数据等进行分析,以辅助疾病诊断、个性化治疗和药物研发。
4、物流和运输:利用大数据技术对交通和运输数据进行实时分析,以优化运输流程和路线,降低成本和提高效率。
5、能源管理:利用大数据技术对能源消耗数据进行分析和预测,以实现节能减排和提高能源利用效率。
综上所述,大数据技术已经广泛应用于各个行业,成为促进企业和组织创新、提高效率和发展的重要推动力量。随着技术的不断进步和数据的不断增加,大数据应用的前景将更加广阔。

目前大数据在哪些行业有案例或者说应用?

1、体育行业预测
世界杯期间,谷歌、百度、微软和高盛等公司都推出了比赛结果预测平台。其中,百度在小组赛阶段的表现最为亮眼,而进入淘汰赛阶段,百度与微软则以16场比赛15场准确预测的成
绩让人们见识到大数据在预测领域的魅力。从互联网公司的经验来看,只要有体育赛事相关的历史数据,并且与指数公司进行多方合作,就可以在赛事预测领域取得不错的成绩。
2、经济、金融行业预测
2013年,英国华威商学院和美国波士顿大学物理系的研究发现,用户通过谷歌搜索的金融关键词或许可以把脉金融市场的走向,相应的投资战略收益高达326%。而此前,也有专家尝试
通过Twitter博文情绪来预测股市波动。从预测的原理上来看,稳定发展的美国股市是比较适合大数据预测发挥其作用的。
对国内而言,百度推出的中小企业景气指数预测,应用百度海量的搜索数据来刻画我国中小企业运行发展的景气状态,以期能够及时、有效地反映中小企业运行状况,提高经济监测的
全面性和及时性。目前该功能已经上线投入应用。
3、市场物价预测
CPI表征已经发生的物价浮动情况,但统计局数据并不权威。但大数据则可能帮助人们了解未来物价走向,提前预知通货膨胀或经济危机。单个商品的价格预测更加容易,尤其是机票
这样的标准化产品,去哪儿提供的“机票日历”就是价格预测,可以告知你几个月后机票的大概价位。商品的生产、渠道成本和大概毛利在充分竞争的市场中是相对稳定的,与价格相
关的变量相对固定,商品的供需关系在电子商务平台可实时监控,因此价格可以预测,基于预测结果可提供购买时间建议,或者指导商家进行动态价格调整和营销活动以利益最大化。
后面还有用户行为预测、个人健康预测、交通行为预测等领域都有涉及,你可以自己好好看看,希望对你有帮助。http://www.ruanyun.net/news/ryyc/n152.aspx
随着大数据时代的到来,大数据早已被逐步的运用在我们生活中的方方面面,那么除了之前众所周知的大数据杀熟事件,对于大数据你还了解多少呢?科学运用案例你又知道多少?今天就跟随千锋小编一起来看看。
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
……
种种的案例实在是太多,或许我们永远说不完一样,所以我们就来看一看大数据被科学运用的一个经典案例:
“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
其实大数据,其影响除了以上列举的方面外,它同时也能在经济、政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。
从大数据角度看,可以把整个营销行为进行数据化,使得营销行动目标明确、可追踪、可衡量、可优化。下面介绍两个大数据营销的成功案例。
百事可乐利用大数据分析签约吴莫愁
“百事可乐选择吴莫愁做代言,是通过大数据的高性能分析得出的结果。”事实上,吴莫愁一出道便颇具争议,但从大数据来分析,这些争议仅限于每位观众对她不同的感觉,而不是她自身的绯闻。在查看这些数据后,百事公司发现,吴莫愁具有相当高的美誉度,并且个性鲜明、带有很强的新生代印记,这成为百事选择吴莫愁的另一个要素。
通过大数据分析促成的这笔签约,也让双方获得双赢的结果。在成功代言百事广告的2013年,吴莫愁跻身“年度华语女歌手吸金榜”第一位,同时,“吴莫愁代言百事”的相关检索量快速攀升,从而带动了百事品牌关注度的增长。
趣多多利用大数据分析玩转愚人节
趣多多利用大数据高性能分析精准锁定了以18-30岁的年轻人为主流消费群体,聚焦于他们乐于并习惯使用的主流社交和网络平台,如新浪微博、腾讯微博、微信、陌陌各种社交APP以及优酷视频等。在愚人节当日进行全天集中性投放,围绕品牌的口号展开话题,使品牌在最佳时机得到最有效曝光。
通过大数据分析趣多多在愚人节的这次大数据营销活动,创造了6亿多次页面浏览并影响到近1500万独立用户,品牌被提及的次数增长了270%。
大数据分析处理正借用巨大商业价值走向营销的大舞台,很多人已经意识到大数据对企业的重要性,而且越来越多的企业试图从海量的数据中分析出有价值的商业信息,以便做到精准营销。
参考资料:http://www.chinawiserv.com/home/news/detail/id/491
  大数据时代,几个例子告诉你什么是大数据
  工具类厂商蓄意炒作大数据,以达到售卖产品的目的,但导致的结果是很多人对大数据这一概念云里雾里。实际上,大数据就发生在你我身边,虽然你看不到它,但它却时时影响着我们的生活。
  现阶段,和大数据相关的企业有三种。一种是工具类公司,他们宣传得最卖力,并且把大数据吹出了泡沫,原因是它们希望把自己的产品卖给企业;一种是依托于大数据从事咨询服务类的企业;还有一种就是实实在拥有大数据的公司,它们和我们休戚相关,也就是下面的小故事所要阐述的内容。

  第一个故事,百货公司知道女孩怀孕
  美国的Target百货公司上线了一套客户分析工具,可以对顾客的购买记录进行分析,并向顾客进行产品推荐。一次,他们根据一个女孩在Target连锁店中的购物记录,推断出这一女孩怀孕,然后开始通过购物手册的形式向女孩推荐一系列孕妇产品。这一作法让女孩的家长勃然大怒,事实真相是女孩隐瞒了怀孕消息。
  点评:看似杂乱无章的购买清单,经过对比发现其中的规律和不符合常规的数据,往往能够得出一些真实的结论。这就是大数据的应用。
  互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

  第二个故事,搜狗热词里的商机
  王建锋是某综合类网站的编辑,基于访问量的考核是这个编辑每天都要面对的事情。但在每年的评比中,他都号称是PV王。原来他的秘密就是只做热点新闻。王建锋养成了看百度搜索风云榜和搜狗热搜榜的习惯,所以,他会优先挑选热情榜上的新闻事件来编辑整理,关注的人自然多。
  点评:搜狗拥有输入法,搜索引擎,那些在输入法和搜索引擎上反复出现的热词,就是搜狗热搜榜的来源。通过对海量词汇的对比,找出哪些是网民关注的。这就是大数据的应用。

  第三个故事,阿里云知道谁需要贷款
  这是阿里人讲述的一个故事。每天,海量的交易和数据在阿里的平台上跑着,阿里通过对商户最近100天的数据分析,就能知道哪些商户可能存在资金问题,此时的阿里贷款平台就有可能出马,同潜在的贷款对象进行沟通。
  点评:通常来说,数据比文字更真实,更能反映一个公司的正常运营情况。通过海量的分析得出企业的经营情况,这就是大数据的应用。

  第四个故事,中移动挽留流失客户
  iPhone进入中国后,铁杆的移动用户王永铭加入了联通合约机大军。由于合约机承担了大量通话内容,王永铭将全球通换成了动感地带。三个月之后,王永铭接到了中国移动的10086电话,向他介绍中移动的优惠资费活动。一位移动的工作人员称,运营商会保管用户数据,如果话费锐减,基本上就是流失先兆。
  点评:给数亿用户建立一个数据库,通过跟踪用户的话费消耗情况,运营商就能知道哪些用户在流失。这就是大数据的应用。

  第五个故事:工薪阶层如何省小钱
  上汽通用五菱股份有限公司的肖伟,是个不折不扣的网购专家。区别于菜市场的费力砍价,肖伟的作法简单多了,登陆各种比价网站,然后选择最便宜的正规店下单。
  点评:比价网站通过海量的产品信息抓取,比如抓京东、天猫、易购的数据,然后将价格由低到高进行排列,这也是大数据的应用。

  第六个故事:公关公司的舆情监督
  这是一个离职公关人的故事。她参与和间接参与了很多危机公关事件,比如雷士照明的创始人股东之争,比如罗永浩砸西门子冰箱事件。她说,她每天的事情都是上网搜索事件的热度,然后决定下一步的动作。
  点评:实际上你的每一下搜索,都是基于海量数据进行的,这实际上也是大数据的一种应用。

  第七个故事:商用社交开始决定百事可乐的营销计划
  这年头,广告主越来越精,他们希望花的每一分钱都有所回报。面对五花八门的营销活动,到底哪一种才是最合适的呢?百事可乐的作法很简单,它们购买了社交信息优化推广公司SocialFlow的服务,对数据进行分析,从而知道何种营销活动的传播效果更好。
  点评:广告主越来越喜欢为类似Social Flow的服务付费,基于海量数据分析然后得出结论的企业营销行为,也是大数据应用。

  第8个故事:每天,我们借助大数据完成微信上的互动
  田宇是一个85后小姑娘,每天她用微信来记录心情,并且和网友分享图片,此外还有各种语音聊天。全国有数亿像田宇一样的人在使用微信,每天都有大数据在微信这个平台上跑着。
  点评:可能你不知道,但你每天都在使用和大数据相关的工具。

  第九个故事:大数据解救了每一个“地理白痴”
  李小茗是个“地理白痴”,所以他下载了一个高德地图。没有安装导航的原因,是因为这一产品付费,且占据了超过3G的内存。只要花一点流量,李小茗就能在地图上查看自己所处的位置,以及周围的建筑。
  点评:虽然李小茗不知道什么是大数据,但每个在他地图屏幕上跳出来的坐标,实际上都是由大数据堆成的。
楼主可以下一个FineBI试一试。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
  大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
  大数据应用案例之:医疗行业
  Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
  在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
  它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
  大数据应用案例之:能源行业
  智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
  维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
  大数据应用案例之:通信行业
  XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
  电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
  中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。
  大数据应用案例之:零售业
  "我们的某个客户,是一家领先的专业时装零售商,通过当地的百货商店、网络及其邮购目录业务为客户提供服务。公司希望向客户提供差异化服务,如何定位公司的差异化,他们通过从 Twitter 和 Facebook 上收集社交信息,更深入的理解化妆品的营销模式,随后他们认识到必须保留两类有价值的客户:高消费者和高影响者。希望通过接受免费化妆服务,让用户进行口碑宣传,这是交易数据与交互数据的完美结合,为业务挑战提供了解决方案。"Informatica的技术帮助这家零售商用社交平台上的数据充实了客户主数据,使他的业务服务更具有目标性。
  零售企业也监控客户的店内走动情况以及与商品的互动。它们将这些数据与交易记录相结合来展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助某领先零售企业减少了17%的存货,同时在保持市场份额的前提下,增加了高利润率自有品牌商品的比例。

大数据利用的六大现实商业案例

大数据利用的六大现实商业案例_数据分析师考试
大数据正在改变市场的竞争格局。而那些能够充分利用大数据分析的企业往往能够更快地向市场提供产品和服务,更好地保持与顾客需求和欲望的一致性。2014年,调研公司Gartner的调查发现,73%的受访企业在大数据方面进行了投资,或者计划在接下来的24个月内投资大数据项目;而2013年的这一数据比例则为64%。改善客户体验和流程效率被受访者排在最高的优先级。
客户体验的改善不管是在线上或线下都在发生着的,数据从智能手机、移动应用程序、POS系统和电子商务网站等等渠道进行收集。随着企业比以往任何时候都能够收集和分析更多的、且类型丰富的数据信息,企业现如今所进行哪些相关工作,以及为什么要进行都需要进行数据量化。而且,那是最灵活的调整自己的经营策略,以提高或维持市场份额的手段。在执行过程中,客户体验的改善有助于提高客户的忠诚度和企业营收的增长。另一方面,如果公司选择无视相关的数据,他们很可能会失去客户和交易,而将其拱手让给那些对于数据分析反应更敏捷,更精明的竞争对手。
企业流程的改进继续专注于提高效率,节约成本,以及提高产品或服务的质量。大数据可以提供比传统系统更深入的见解,因为其有更多的数据点和数据来源分析作为支撑。
无论企业的目标是为了促进营收增长、或是加快产品服务的上市速度、优化劳动力,或是实现其他操作方面的改进,其核心都在与变得更加积极主动,减少被动反应,这就意味着需要使用预测分析,以缩短学习曲线。
有许多使用大数据来提升和改善企业运营的方法,下面将为大家介绍六个典型的案例。
缩短上市时间
推出新的产品或服务涉及多个生命周期阶段,其中一些比另一些更容易加速。在过去的几十年中,药品制造商已经使用临床试验模拟学习速度,降低成本,并减少了参与试验患者的不必要的负担。借助云计算和大数据,临床试验的模拟可以变得更加有利于制造商和患者。
百时美施贵宝公司(bristol-myers squibb) 通过将其内部托管网格环境扩展到AWS云,减少了98%的临床试验模拟时间。该公司还进一步优化了剂量水平,使得药物产品更安全,并只需要较少的临床试验患者的血液样本。
由于临床试验对于数据是高度敏感的,百时美施贵宝公司建立了一个专门的,加密的VPN隧道链接亚马逊网关,并配置了虚拟私有云,以便使得其运行环境能够与公众客户进行隔离。
在迁入云中之前,科学家们使用一个共享的内部环境,所以运行大约数百个项目需要花费60小时。现在,每个科学家都有一个专门的环境,2000个项目大约在1.2小时内就能够处理完毕,而且不会引起影响到团队的其他成员。
迁移到AWS云之后,百时美施贵宝公司得以能够减少儿科研究临床试验受试者的人数,从60减少到40人,同时还缩短了一年多的学习研究时间。
优化劳动力
一些企业的人力资源部门正在使用人才分析和大数据来降低成本,进而有效管理人力资源相关的问题。大数据帮助他们能够有效的选择能够更好的适应企业的新员工,降低员工离职率,了解技能和现有市场劳动力的输出状况,并确定公司前向发展所需要的人才。
施乐公司使用大数据将其呼叫中心的人员流失率降低了20%。要做到这一点,就必须了解是什么原因导致了员工的离职,并确定如何改善员工的敬业度。
改善财务绩效
企业的财务部门已经不仅仅只是进行定期的报告和BI工作了,他们已经在开始利用大数据来降低风险和成本,寻找机会提高预测的准确性。具体地说,他们使用的数据来识别高风险客户和供应商,以阻止欺诈,找准收入泄漏,并发掘新的或更有效的商业模式。
最近,天气预测公司The Weather Company与IBM之间的合作将使企业用户得以更好地管理天气状况对于企业绩效的影响。据The Weather Company介绍,每年,仅在美国天气因素就会造成价值五千亿美元的经济影响。
这些气象数据是来自超过10万台的气象传感器和飞机,以及数以百万计的智能手机、建筑和路上奔跑的车辆。这些数据与其他22亿个独特的预测点的数据来源相结合,平均每天进行100多亿次的实时天气预报。例如,零售商可以使用这些数据信息来调整人员配置和供应链策略。而能源公司将能够借助这些天气数据信息改善供应和预测需求。保险公司将能够向其投保人警告恶劣天气条件,这样他们就可以减少在冰雹灾害天气发生汽车损坏的可能性。
智能化的销售
稍微修改一下企业的销售和营销策略就可能会对您企业的销售业绩产生深远的影响,特别是当通过大数据分析之后进行的有规划的修改。
想象一下,一个为期六周的直邮营销活动票面收益率的超过了70%。而根据直销协会的介绍,平均直邮回报率仅为3.7%。而杂货连锁店Kroger公司是如何做到的呢?一方面,他们根据客户个人的购物历史记录采用个性化的直接邮寄方式。
Kroger公司的客户会员卡计划,被食品行业评为第一。超过90%的客户使用会员卡购买产品。虽然也有其他因素的共同作用,使得Kroger公司的财务绩效如此骄人,但其连续45个季度的持续增长至少部分要归因于其客户忠诚计划。
最大限度地减少设备和资产故障
企业希望避免不必要的业务中断干扰和客户的焦虑。现在,传感器已经被嵌入到一切设备,企业可以使用这些数据信息,以确定何时需要对飞机,火车,汽车,及其它电器设备进行维修。理想情况下,当问题已经出现的时候,企业要了解这个问题是什么原因造成的,以及其如何能得到解决,最好有一个专业的维修队伍。
Pratt &Whitney公司是美国联合技术公司(United Technologies Corp.)下属的一个单位,该公司试图减少意外的飞机发动机维修。据Airinsight.com介绍,今天的发动机能够在飞机飞行过程中从多个快照收集约100个参数。相比之下,新一代的引擎能够收集关于连续飞行的5000个参数。这一过程中产生约2千兆字节的数据。使用这些数据信息,Pratt &Whitney公司及其合作伙伴IBM得以进行主动的维修。
利用客户的终身价值
如今的授权客户比以往任何时候都更加苛刻和善变。企业为了保持或增加市场份额,需要尽可能多地了解自己的客户,不断改善自己的产品和服务,并愿意调整自己的商业模式,以反映其客户的实际需求。
美国汽车租赁公司AvisBudget就一直致力于这方面。他们通过实施整合战略增加了市场份额,并取得了数亿美元的额外收入。主动参与确定客户价值细分,提供分层激励,提高客户的忠诚度。该公司的IT合作伙伴CSC公司采用模型预测AvisBudget客户数据库的终身价值,并验证了其使用多通道的营销活动和相应的分析。
现在的客户评估数据结合了其他数据,包括客户的租赁历史,服务问题,服务地区的人口统计,企业隶属关系和客户反馈等等。Avis Budget也收集和分析社交媒体数据。该公司有一个社交媒体专家团队专门进行品牌营销。该公司最近还更新了网站,以进一步改善客户体验,并且他们正在使用大数据预测区域性的车队配售和定价服务需求。
以上是小编为大家分享的关于大数据利用的六大现实商业案例的相关内容,更多信息可以关注环球青藤分享更多干货

互联网营销发展分析及案例

  案例分析的一个重要环节是分析数据分析。案例分析数据分析使企业知道顾客和竞争对手正在市场上干些什么,是提升企业竞争力的一个重要途径。那么下面是我整理的互联网营销发展分析及案例,希望能够有所帮助。

  互联网营销发展分析及案例一:   褚橙——打造高溢价的农产品电商
  本来生活网运营中心副总经理唐宋在名为《像可口可乐一样卖水果》的分享中提及,在做褚橙2013年的品牌营销的时候,考虑到的问题——如何将非标准化的东西做成一个标准化,以及如何面对年轻人做推广。
  于是我们看到本来生活网以“讲故事+文化包装+食品安全+社会化媒体营销+产销电商一条龙”,打造了2013年褚橙大卖。其中将大数据技术和社会化广告技术进行结合,通过“褚橙故事”传播+预售促销活动相互配合的形式为褚橙的售卖做预热的方式值得借鉴。以下是一些在之前广泛讨论的事实基础上总结的褚橙案例要点:
  1)利用大数据技术为社会化广告投放提供方向和依据
  精准锁定目标人群,进行定向推广(搜集信息范围包括产品潜在粉丝、竞品消费者、达人意见领袖等)
  2)为产品传播进行内容营销
  制定了三组适合社会化传播的内容方向,包括:褚橙产品安全方向、褚时健故事励志方向、微博粉丝独享优惠方向,建立起与目标消费者联系的桥梁
  3)将大数据技术捕捉到的精准画像与内容方向进行匹配
  制定不同投放组合计划,测试出互动率最高的传播组合进行重点推广,确保每一分推广费用都花在刀刃上
  4)邀请达人品尝励志橙活动-开展“无任何门槛”形式的馈赠活动
  搜集了1000名不同行业的80后创业达人进行了褚橙无偿激励赠送活动。30%的达人接受了赠送,后续带来了更多围绕褚橙的热议话题。
  互联网营销发展分析及案例二:   锦江之星酒店网络营销案例分析
  2010我国在线旅游行业热闹非常,无论是酒店还是机票在线预定网站,都纷纷打起了网络营销牌,先是有国内某网站效仿澳洲大堡礁“世界上最好的工作”案例,发起了“万元试睡员”活动吸引了大批网民关注。但是网络营销培训认为:要真正达到网民和企业共赢的营销效果并非这么简单,记者在采访国内著名的连锁酒店品牌--锦江之星的市场营销团队和网络营销专家们得出的意见是:走有中国特色的网络营销之道才是王道。
  足够利益驱动,让开心网民更开心
  在众多纷繁的网络营销案例中,锦江之星的市场营销团队注意到,只有将中国网民的行为习惯和企业营销目标结合起来,才能实现网络营销的效果最大化。而如何实现这两者之间的结合呢与国内风头正盛的SNS媒体--开心网合作,便成为锦江之星市场营销团队的一次重要选择。
  锦江之星市场部总监陈文哲先生向记者介绍说,开心网的用户主要以国内各大城市的白领为主,其人群特征和消费品味,符合锦江之星的品牌定位。这是锦江之星选择和开心网合作的重要原因之一,如何让开心网的用户也能成为锦江之星的用户,他认为应当在不影响开心网用户体验的前提下,给予潜在客户人群以足够的利益驱动。
  为此,锦江之星携全国已开业的300多家连锁店在2010年1月20日开始到3月10日共同推出“千万(奖品)别错过”的主题优惠活动,奖品非常丰富,活动设置轻松、有趣,截止到记者发稿时止,本次活动在开心网首页广告的网民浏览量已经超过了100万次,网友们对活动帖子的浏览量达到500万次,每天都有近10万人次将锦江之星的抵用券作为礼物在亲朋好友之间互相赠送。
  完全利益共享,赢得人气与人心
  与很多国内企业完全照搬国外的营销案例相比,锦江之星的市场营销团队对于如何在竞争激烈的市场环境中,既能尊重中国用户的心理特征、文化背景特色;又能独辟蹊径,大胆创新颇具信心。对于酒店行业来说,口碑和品牌至关重要。在竞争激烈的连锁酒店业,锦江之星如何在巩固和强化自己作为国内经济型连锁酒店领导品牌的上佳口碑
  “我们会始终从客户体验的角度,坚持做好品质,用我们务实的精神、专业的技能和真诚的服务打动每一位顾客。而且,我们会不断的坚持走创新营销之路,本着互惠互利、合作双赢的目的与消费者进行全方位的沟通。”锦江之星本次活动的负责人童吉泉先生如此表示。
  网络营销专家王驰宇在接受记者采访时,表现得更多的是对锦江之星市场营销团队的敬佩之情。“对于锦江之星这样一家拥有十几年著名品牌的连锁酒店来说,始终怀着一种与新老顾客、合作方利益共享的理念,并能够敏锐的捕捉和把握不断年轻化、网络化的客群特点,这让我们对锦江之星的发展和未来充满了信心”
  对此,国内酒店行业资深专家在接受采访时表示,酒店营销人需要有危机感和使命感,要为行业的兴旺而苦练内功,避免无序竞争、盲目削价造成的内耗。更要彼此做联合经营的忠诚伙伴,学会双赢或多赢,变你死我活的竞争为协同发展竞争,这才是新形势下酒店业的发展途径,也是大势所趋。

[恒丰银行]基于大数据的精准营销模型应用

【案例】恒丰银行——基于大数据的精准营销模型应用 https://mp.weixin.qq.com/s?src=3×tamp=1500159788&ver=1&signature=pCHfpePVrKXUGp39JEg577lopIPT9KCdx9FqIL2LbRmunZMQ-86itFcexY XKcX3Vb1ypwGo8v0IU6fkNgcs QIafGAccsZFmMb6yBYcuPdqH63EKBvL88BGFaUrBBPQl0v*mpgzYxrTCkcaJGaX2iIFRHZEDNCmuM0qhqqN294=
本篇案例为数据猿推出的大型 “金融大数据主题策划” 活动 (查看详情) 第一部分的系列案例/征文;感谢** 恒丰银行** 的投递
作为整体活动的第二部分,2017年6月29日,由数据猿主办,上海金融信息行业协会、互联网普惠金融研究院合办,中国信息通信研究院、大数据发展促进委员会、上海大数据联盟、首席数据官联盟、中国大数据技术与应用联盟协办的 《「数据猿·超声波」之金融科技·商业价值探索高峰论坛》 还将在上海隆重举办 【论坛详情】 【上届回顾(点击阅读原文查看)】
在论坛现场,也将颁发 “技术创新奖”、“应用创新奖”、“最佳实践奖”、“优秀案例奖” 四大类案例奖
本文长度为 6000 字,建议阅读 12 分钟
如今,商业银行信息化的迅速发展,产生了大量的业务数据、中间数据和非结构化数据,大数据随之兴起。要从这些海量数据中提取出有价值的信息,为商业银行的各类决策提供参考和服务,需要结合大数据和人工智能技术。国外的汇丰、花旗和瑞士银行是数据挖掘技术应用的先行者。在国内的商业银行中,大数据的思想和技术逐步开始在业务中获得实践和尝试。
面对日趋激烈的行业内部竞争及互联网金融带来的冲击,传统的上门营销、电话营销,甚至是扫街营销等方式跟不上时代的节奏。利用精准营销可节约大量的人力物力、提高营销精准程度,并减少业务环节,无形中为商业银行节约了大量的营销成本。
虽然恒丰银行内部拥有客户的基本信息和交易等大量数据,但是传统的营销系统并没有挖掘出行内大量数据的价值,仍然停留在传统的规则模型。当下,恒丰银行接入了大量的外部数据,有着更多的维度,如果将内部数据与外部数据进行交叉,则能产生更大的价值。客户信息收集越全面、完整,数据分析得到的结论就越趋向于合理和客观。利用人工智能技术,建立精准营销系统变得可能且必要。
恒丰银行基于大数据的精准营销方案是利用大数据平台上的机器学习模型深入洞察客户行为、客户需求,客户偏好,挖掘潜出在客户,实现可持续的营销计划。
周期/节奏
2016.4-2016.5 完成需求梳理和业务调研,并在此基础上进行总体方案设计。 2016.5-2016.8 整理银行内、外部数据,根据营销需求制定客户标签和设计文档,实施用户画像。 2016.8-2016.10 在用户画像的基础上,构建理财产品个性化推荐系统。其中包括个性化推荐算法调研,模型对比等一系列工作。 2016.10-2017.1 客户需求预测并对客户价值进行建模,并完善整合精准营销应用模型。 2017.1-2017.3 用户画像、个性化推荐、客户价值预测等精准营销模型上线。
客户名称/所属分类
恒丰银行/客户管理
任务/目标
根据零售业务营销要求,运用多种数据源分析客户行为洞察客户需求,实现精准营销与服务,提高银行客户满意度和忠诚度。
针对不同的客户特征、产品特征和渠道特征,制定不同市场推广策略。为了完成以上任务,主要从以下几个方面构建精准营销系统:
1.用户画像: 结合用户的历史行为和基本属性给用户打标签。
2.精准推荐系统: 给用户推荐个性化理财产品, 例如在微信银行中给每个客户推荐他喜欢的产品,帮客户找到其最适合的产品,增加产品的购买率。
3.需求预测和客户价值: 新产品发售的时候,找到最有可能购买该产品的客户,进行短信营销,进而提高产品响应率。客户价值精准定位,根据客户价值水平制定不同的推荐策略。银行通过计算客户使用其产品与服务后所形成的实际业务收益,充分了解每一个客户的贡献度,为管理层提供决策支撑。
挑战
项目实施过程由用户画像,精准推荐系统,需求预测和客户价值建模三部分组成,采用TDH机器学习平台Discover所提供的算法和模型库进行开发和验证。
(一)用户画像的建立
客户标签主要包含客户基本属性,客户等级标签,客户偏好标签,客户交易特征,客户流失特征,客户信用特征,客户终身价值标签,客户潜在需求标签。
(二)精准推荐系统的建立
由于系统复杂,且篇幅有限,仅对其中最重要的理财推荐系统做详细阐述。精准推荐系统架构图如下。
2.1业务问题转化为机器学习问题
业务问题
银行理财产品个性化推荐给客户。 例如在微信银行中给每个客户推荐此客户喜欢的产品,帮客户找到其最适合的产品,增加产品的购买率。
将业务问题转化为机器学习问题
理财产品种类繁多,产品迭代速度很快,客户在繁多的产品中不能快速找到适合自己的产品,因此有必要建立一个自动化推荐模型,建立客户理财偏好,给客户推荐最适合的产品。
将银行理财产品推荐业务问题转化为机器学习问题,进而利用人工智能技术提高推荐产品的点击率和购买率。例如在恰当的时间,通过用户偏好的渠道给用户推荐产品,推荐的结果为用户购买或者未购买。这个问题可以看作一个典型机器学习二分类问题:基于历史营销数据来训练模型,让模型自动学到客户购买的产品偏好,并预测客户下次购买理财产品的概率。对模型预测出所有客户对所有产品的响应概率进行排序,可选择客户购买概率最高的topN个产品推荐给客户。
下面将叙述如何构建该推荐预测模型。
2.2数据源准备
在建立的一个理财推荐模型之前,可以预见到相似的客户可能会喜好相似的产品(需要表征客户和产品的数据),同一个人的喜好可能具有连续性(购买历史交易数据,包括基金国债等),他的存款、贷款资金可能决定了他能购买什么档次的理财等等。因此,我们需要准备以下数据。
客户基本属性:客户性别,年龄,开户时间,评估的风险等级等等。 产品基本属性:产品的逾期收益率,产品周期,保本非保本,风险等级等。 客户购买理财产品的历史:在什么时候购买什么产品以及购买的金额。 客户的存款历史: 客户历史存款日均余额等。 客户的贷款历史: 客户历史贷款信息等。 客户工资:客户工资的多少也决定了客户购买理财的额度和偏好。 用户画像提取的特征:用户的AUM等级,贡献度,之前购买基金,国债的金额等。
2.3特征转换和抽取
有了这么多数据,但是有一部分特征是算法不能直接处理的,还有一部分数据是算法不能直接利用的。
特征转换
把不能处理的特征做一些转换,处理成算法容易处理的干净特征。举例如下:
开户日期。就时间属性本身来说,对模型来说不具有任何意义,需要把开户日期转变成到购买理财时的时间间隔。
产品特征。从理财产品信息表里面可以得到风险等级,起点金额等。但是并没有标志这款产品是否是新手专属,是否是忠诚客户专属。这就需要我们从产品名字抽取这款产品的上述特征。
客户交易的时间信息。同客户的开户日期,孤立时间点的交易信息不具有任何意义,我们可以把交易时间转变为距离上次购买的时间间隔。
特征抽取
还有一部分数据算法不能直接利用,例如客户存款信息,客户交易信息。我们需用从理财交易和存款表中抽取可能有用的信息。
用户存款信息:根据我们的经验,客户购买理财之前的存款变动信息更能表明客户购买理财的真实想法,因此我们需要从客户历史存款数据抽取客户近三个月,近一个月,近一周的日均余额,以体现客户存款变化。
客户交易信息:客户最近一次购买的产品、购买的金额、及其相关属性,最近一个月购买的产品、购买的金额及其相关属性等等。
以上例举的只是部分特征。
2.4构造、划分训练和测试集
构造
以上说明了如何抽取客户购买理财的相关特征,只是针对正样本的,即客户购买某种理财时候的特征。隐藏着的信息是,此客户当时没有购买其他在发售的产品。假设把客户购买了产品的标签设为1,没有购买的产品样本设为0,我们大致有如下训练样本(只列举部分特征)。
其中客户是否购买产品是我们在有监督训练的标签,也就是我们建立的是一个预测客户是否会购买产的模型。
划分训练集和测试集
考虑到最终模型会预测将来的某时间客户购买某种产品的概率,为了更真实的测试模型效果,以时间来切分训练集和测试集。具体做法如下。假设我们有2016-09-01 ~ 2017-03-20 的理财购买相关数据。以2016-09-01 ~ 2017-03-19的理财交易数据作为训练,2017-03-20这一天的客户对每个产品是否购买的数据作为测试。以2016-09-01 ~ 2017-03-18的理财交易数据作为训练,2017-03-19这一天的客户对每个产品是否购买的数据作为测试,以此类推。
2.5模型训练
根据提取的特征,组成样本宽表,输入到分类模型,这里选择了TDH平台机器学习组件Discover所提供的近百个分布式算法进行建模和训练,同时我们还使用了特征的高阶交叉特性进行推荐的预测和分析。
2.6模型评估
评价推荐好坏的指标很多,比较常用的有
1.ROC曲线下面积(AUC) 2.logloss 3.推荐产品第一次命中rank的倒数(MRR) 4.TopN
针对银行的理财推荐实际业务,客户当天绝大多数是只购买了某一款理财,MRR(Mean Average Precision 的特殊情况)能反应这种情况下推荐的好坏。另一种直观的评价指标是TopN,假定我们只推荐N个模型认为客户最有可能购买的产品,并和真实情况比较,就能得到当天推荐的结果的混淆矩阵,TN,TP,FN,FP,recall,precision等。
我们在生产上验证了最近十天的推荐效果,即测试了2017-03-20, 2017-03-19,…… , 2017-03-11等十天的推荐效果,以下是这些结果的评价。
AUC
Logloss
MRR
0.89
0.45
0.78
也可以把新客户(之前没有购买理财)和老客户(至少购买过一次)分开评估效果。 新客户的购买占了整个理财购买的1/3 以上。
测试新客户的预测效果,可以看出模型对冷启动问题解决的好坏。
对新客户的预测效果
AUC
Logloss
MRR
0.80
0.73
0.32
对老客户的预测效果
AUC
Logloss
MRR
0.92
0.38
0.88
2.7模型优化
1.上线之前的优化:特征提取,样本抽样,参数调参 2.上线之后的迭代,根据实际的A/B testing和业务人员的建议改进模型
(三)需求预测和客户价值
“顾客终生价值”(Customer Lifetime Value)指的是每个购买者在未来可能为企业带来的收益总和。研究表明,如同某种产品一样,顾客对于企业利润的贡献也可以分为导入期、快速增长期、成熟期和衰退期。
经典的客户终身价值建模的模型基于客户RFM模型。模型简单的把客户划分为几个状态,有一定意义但不一定准确,毕竟RFM模型用到的特征不全面,不能很好的表征客户的价值以及客户银行关系管理。
为了方便的对客户终身价值建模,有几个假定条件。其一把客户的购买价值近似为客户为企业带来的总收益,其二把未来时间定义在未来一个季度、半年或者一年。也就是我们通过预测客户在下一个时间段内的购买价值来定义客户的终身价值。因此,我们将预测的问题分为两个步骤:第一步预测这个客户在下一个阶段是否会发生购买(需求预测)。第二步对预测有购买行为的客户继续建模预测会购买多大产品价值。
3.1需求预测
提取客户定活期存款、pos机刷卡、渠道端查询历史等特征,以这些特征作为输入预测用户在当前时间节点是否有购买需求,训练和测试样本构造如下:
1.历史用户购买记录作为正样本。 2.抽样一部分从未购买的理财产品的用户作为负样本集合Un,对于每一个正样本Un中随机选取一个用户构造负样本。 3.选取2016.04-201610 的购买数据作为训练样本,2016.11的数据作为测试样本。
使用机器学习算法进行分类训练和预测,重复上述实验,得到下列结果:
AUC: 0.930451274 precision: 0.8993963783 recall: 0.8357507082 fmeasure: 0.8664062729
进一步对客户分群之后,可以更好的对新客户进行建模,对于老客户我们可以进一步提取他们的历史购买特征,预测他们在下一段时间内购买的产品价值(数量,金额等),对于新客户,可以进根据他的存款量预测其第一次购买的产品价值,把存款客户变成理财客户。通过分析客户存款变动于客户购买理财的关系,我们发现客户购买理财的前一段时间内定活期的增加的有不同的模式,如下图。
根据需求预测模型,我们给出新客户最有可能购买的top N 列表,然后由业务人员进行市场推广。
3.2客户价值预测
进一步预测有购买需求的客户的购买价值高低。这是个回归问题,但是预测变量从二分类变量变为预测连续的金额值。训练的时候预测值取训练周期内(一个月或者季度)客户所购买的总金额。
算出客户的当前价值(即当前阶段购买的产品价值)和未来价值(预测的下一个阶段的客户价值)可以帮助我们鉴定客户处于流失阶段,或者上升阶段,或者是稳定阶段。当前价值取的是当前时间前三个月的交易量。对流失阶段高价值客户可以适当给予营销优惠,对于有购买意向的客户适当引导。如下图所示。
结果/效果
一是提高银行营销准确性。随着客户不断增加,理财产品也在不断推陈出新,在实时精准营销平台的帮助下,银行从以前盲目撒网式的营销方式转变到对不同客户精准触达,提高了理财产品的营销成功率,降低销售和运作成本。理财产品推荐的上线以来,产品推荐成功率比专家经验排序模型最高提升10倍。
二是增加银行获客数量。精准营销系统洞察客户潜在需求和偏好,提高了银行获取目标客户群的准确率。从数百万客户中,通过机器学习模型,找到最有可能购买产品的客户群,通过渠道营销,实现响应率提升。相比传统盲发模式,发送原38%的短信即可覆盖80%的客户。
通过构建基于大数据的精准营销方案,恒丰银行深入洞察客户行为、需求、偏好,帮助银行深入了解客户,并打造个性化推荐系统和建立客户价值预测模型,实现可持续的营销计划。