当前位置:首页 > 技能培训 > 正文

高中数学公式大全,高中数学公式有哪些?

技能培训 · Sep 23, 2023

本文目录一览:

数学公式高中有哪些?

数学公式高中介绍如下:
一、数列定律公式:
1、等差数列中:S奇=na中,例如S13=13a7。
2、等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差。
3、等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立。
4、等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q。
二、常用数列公式:bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2。
三、抛物线公式:k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo。注:(xo,yo)均为直线过圆锥曲线所截段的中点。
四、绝对值不等式公式:∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣。
五、向量a在向量b上的射影公式:〔向量a×向量b的数量积〕/[向量b的模]。

高中必背88个数学公式

高中必背的88个数学公式如下:
1、几何公式:
三角形面积公式:\[S=\frac{1}{2}bh\]、直角三角形勾股定理:\[a^2+b^2=c^2\]、任意三角形余弦定理:\[c^2=a^2+b^2-2ab\cosC\]、任意三角形正弦定理:\[\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sinC}\]。
圆的周长公式:\[C=2\pir\]、圆的面积公式:\[S=\pir^2\]、椭圆的面积公式:\[S=\piab\]、平行四边形面积公式:\[S=bh\]、梯形面积公式:\[S=\frac{1}{2}(a+b)h\]。
2、代数与函数公式:
两点之间距离公式:\[d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\]、二次方程求根公式:\[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]、因式分解公式:\[a^2-b^2=(a+b)(a-b)\]、平方差公式:\[a^2-b^2=(a+b)(a-b)\]。
二次平方差公式:\[a^2+2ab+b^2=(a+b)^2\]、二次平方和公式:\[a^2-2ab+b^2=(a-b)^2\]、余弦和与差公式:\[\cos(A\pmB)=\cosA\cosB\mp\sinA\sinB\]、正弦和与差公式:\[\sin(A\pmB)=\sinA\cosB\pm\cosA\sinB\]。
对数与指数公式:\[a^{\log_{a}N}=N\]、分式运算公式:\(\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}\)、连分数公式:\[a_0+\cfrac{1}{a_1+\cfrac{1}{a_2+\cfrac{1}{a_3+...}}}\]。
3、概率与统计公式:
排列公式:\(P_n^m=\frac{n!}{(n-m)!}\)、组合公式:\(C_n^m=\frac{n!}{m!(n-m)!}\)、乘法原理:如果一个实验有\(m\)个步骤,第\(i\)个步骤有\(n_i\)种可能结果,那么整个实验有\(n_1\timesn_2\times...\timesn_m\)种可能结果。
加法原理:如果一个实验有\(m\)个互不相容的事件,第\(i\)个事件发生的概率为\(P(A_i)\),则整个实验发生的概率为\(P(A_1\cupA_2\cup...\cupA_m)=P(A_1)+P(A_2)+...+P(A_m)\)条件概率公式:\[P(A|B)=\frac{P(A\capB)}{P(B)}\]。
乘法公式:\[P(A\capB)=P(B)P(A|B)=P(A)P(B|A)\]、全概率公式:\[P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+...+P(A|B_n)P(B_n)\]、Bayes公式:\[P(B_i|A)=\frac{P(A|B_i)P(B_i)}{P(A)}\]
4、导数与积分公式:
基本导数公式:常数函数求导为0,\(x^n\)的导数为\(nx^{n-1}\),\(\sinx\)的导数为\(\cos x\),\(\cosx\)的导数为\(-\sinx\),\(\log_a{x}\)的导数为\(\frac{1}{x\lna}\)。
基本积分公式:\(a^x\)的不定积分为\(\frac{a^x}{\lna}+C\),\(\sinx\)的不定积分为\(-\cosx +C\),\(\cosx\)的不定积分为\(\sinx+C\),\(\frac{1}{x}\)的不定积分为\(\ln|x|+C\)。
反常积分公式:\(|x|\)在区间\([-a,a]\)上的积分为0,\(\frac{1}{x^2}\)在区间\([a,+\infty)\)上的积分为\(\frac{1}{a}\),\(\frac{1}{x}\)在区间\([a,+\infty)\)上的积分为\(\lna\)。
二重积分公式:\(\iint_Df(x,y)dxdy=\iint_{D'}f(x(u,v),y(u,v))|J(u,v)|dudv\)、三重积分公式:\(\iiint_\Omegaf(x,y,z)dxdydz=\iiint_{\Omega'}f(x(u,v,w),y(u,v,w),z(u,v,w))|J(u,v,w)|dudvdw\)。
5、矩阵与行列式公式:
矩阵乘法公式:若矩阵\(A\)的维度为\(m\timesn\),矩阵\(B\)的维度为\(n\timesp\),则矩阵\(AB\)的维度为\(m\timesp\)。
行列式性质:行列式的转置等于其自身,行列式两行交换改变符号,行列式两行相等结果为0,行列式两行成比例结果为0。
6、数列与级数公式:
等差数列前\(n\)项和公式:\[S_n=\frac{n}{2}(a_1+a_n)\]、等比数列前\(n\)项和公式:若\(r\neq1\),则\[S_n=\frac{a_1(1-r^n)}{1-r}\]、幂级数收敛判定公式:当\(|x|R\)时,幂级数发散;当\(|x|=R\)时,收敛性需要进一步判定。
7、解析几何公式:
点到直线距离公式:点\(P(x_0,y_0)\)到直线\(Ax+By+C=0\)的距离为\[d=\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}\]。
8、立体几何公式:
空间直线方程:一般式方程:\[\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}\]对称式方程:\[\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}=t\]空间平面方程:点法式方程:\[A(x-x_0)+B(y-y_0)+C(z-z_0)=0\]一般式方程:\[Ax+By+Cz+D=0\]。
空间曲线弧长公式:一般曲线\(C\)的弧长公式为:\[L=\int_{a}^{b}\sqrt{(dx)^2+(dy)^2+(dz)^2}\]、空间曲面面积公式:一般曲面\(S\)的面积公式为:\[S=\iint_{D}\sqrt{1+(f'_x)^2+(f'_y)^2}dxdy\]空间曲面曲率公式:一般曲面\(S\)的曲率公式为:\[K=\frac{|f''_x\timesf''_y|}{(1+(f'_x)^2+(f'_y)^2)^\frac{3}{2}}\]。
9、三角恒等式:
正弦定理:\(\frac{a}{\sinA}=\frac{b}{\sinB}=\frac{c}{\sinC}\)、余弦定理:\(c^2=a^2+b^2-2ab\cosC\)、正切和余切的关系:\(\tanA=\frac{\sinA}{\cosA}\),\(\cot A=\frac{1}{\tanA}\)。
和差角公式:\(\sin(A\pmB)=\sinA\cosB\pm\cosA\sinB\),\(\cos(A\pmB)=\cosA\cos B\mp\sinA\sinB\)、二倍角公式:\(\sin2A=2\sinA\cosA\),\(\cos2A=\cos^2A-\sin^2 A\),\(\tan2A=\frac{2\tanA}{1-\tan^2A}\)。
三倍角公式:\(\sin3A=3\sinA-4\sin^3A\),\(\cos3A=4\cos^3A-3\cosA\),\(\tan 3A=\frac{3\tanA-\tan^3A}{1-3\tan^2A}\)。
10、数学分析公式:
中值定理:若函数\(f(x)\)在区间\([a,b]\)连续,在\((a,b)\)可导,则存在\(c\in(a,b)\),使得\[\frac{f(b)-f(a)}{b-a}=f'(c)\]、拉格朗日中值定理:若函数\(f(x)\)在区间\([a,b]\)连续,在\((a,b)\)可导,则存在\(c\in(a,b)\),使得\[f'(c)=\frac{f(b)-f(a)}{b-a}\]。
柯西中值定理:若函数\(f(x),g(x)\)在区间\([a,b]\)连续,在\((a,b)\)可导,并且\(g'(x)\neq 0\),则存在\(c\in(a,b)\),使得\[f'(c)=\frac{f(b)-f(a)}{g(b)-g(a)}\]。

高中生的数学公式

高中生的数学公式大全
  公式在数学中占很重要的位置,下面我为大家精心整理的高中生的数学公式大全,欢迎大家阅读与学习!

  乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
  |a-b|≥|a|-|b| -|a|≤a≤|a|
  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
  根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
  判别式
   b2-4ac=0 注:方程有两个相等的'实根
  b2-4ac>0 注:方程有两个不等的实根
  b2-4ac<0 注:方程没有实根,有共轭复数根
  三角函数公式
  两角和公式
  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
  倍角公式
  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
  半角公式
  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
  和差化积
  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
  某些数列前n项和
  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
  余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
  圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
  圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
  抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
  直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
  正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
  圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
  圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
  弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
  锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
  斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

高中数学公式大全 高中数学公式介绍

1、抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h

正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h

圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h。

2、正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b。

3、和差化积:

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB。

4、两角和公式:

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)。

高中必背88个数学公式

高中必背88个数学公式有:圆的公式、椭圆公式、两角和公式、倍角公式、半角公式、和差化积、等差数列、等比数列、抛物线等公式。
一、高中必背88个数学公式——圆的公式
1、圆体积=4/3(pi)(r^3)
2、面积=(pi)(r^2)
3、周长=2(pi)r
4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】
5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
二、高中必背88个数学公式——椭圆公式
1、椭圆周长公式:l=2πb+4(a-b)
2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.
3、椭圆面积公式:s=πab
4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
三、高中必背88个数学公式——两角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
四、高中必背88个数学公式——倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

高中数学必背公式知识点大全

在数学的学习以及做题方面,我们的数学解题都离不开公式,高中数学有很多需要必备的公式,那么我就将其中重要的公式给大家整理一下。

三角公式大全 1.两角和公式:
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
2.倍角公式:
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
3.半角公式:
sin(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)
cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)
tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))
ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))
4.和差化积:
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
立体图形及平面图形的公式 圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h
正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2
某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h

高中数学公式有哪些?

高中数学公式如下:
1、cos(A-B) = cosAcosB+sinAsinB。
2、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。
3、tan3a = tan a ? tan(π/3+a)? tan(π/3-a)。
4、sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)。
5、cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]。

高中数学必备公式有哪些?

高中数学必备公式有三大基础函数的解析式,三角函数的诱导公式,三角恒等变换公式,求导公式,向量的运算,数量积公式,积分运算公式,立体几何体积公式,等差、等比数列的通项公式、前n项和公式等。
同角三角函数的基本关系式介绍
1、倒数关系:
tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1
2、的关系:
sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα
3、平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
六种基本函数:
函数名:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。
正弦函数:sinθ=y/r
余弦函数:cosθ=x/r
正切函数:tanθ=y/x
余切函数:cotθ=x/y
正割函数:secθ=r/x
余割函数:cscθ=r/y

高中数学公式大全

正弦定理
a/sinA=b/sinB=c/sinC=2R
注:
其中
R
表示三角形的外接圆半径
余弦定理
b^2=a^2+c^2-2accosB
注:角B是边a和边c的夹角
圆的标准方程
(x-a)^2+(y-b)^2=^r2
注:(a,b)是圆心坐标
圆的一般方程
x^2+y^2+Dx+Ey+F=0
注:D^2+E^2-4F>0
抛物线标准方程
y^2=2px
y^2=-2px
x^2=2py
x^2=-2py
直棱柱侧面积
S=c*h
斜棱柱侧面积
S=c'*h
正棱锥侧面积
S=1/2c*h'
正棱台侧面积
S=1/2(c+c')h'
圆台侧面积
S=1/2(c+c')l=pi(R+r)l
球的表面积
S=4pi*r2
圆柱侧面积
S=c*h=2pi*h
圆锥侧面积
S=1/2*c*l=pi*r*l
弧长公式
l=a*r
a是圆心角的弧度数r
>0
扇形面积公式
s=1/2*l*r
锥体体积公式
V=1/3*S*H
圆锥体体积公式
V=1/3*pi*r2h

斜棱柱体积
V=S'L
注:其中,S'是直截面面积,
L是侧棱长
柱体体积公式
V=s*h
圆柱体
V=pi*r2h
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2
-1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA))
cot(A/2)=-√((1+cosA)/((1-cosA))

和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
常用导数公式
1.y=c(c为常数)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax
y'=logae/x
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2